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Abstract— Sport video shot classification is a basic step in the 
sport video processing. For many purposes such as event 
detection and summarization, shot classification is needed for 
content filtering. In this paper, we present a new method for 
soccer video shot classification. At first, in-field and out-of-field 
frames are separated. In in-field frames three features based 
on number of connected components and shirt color percent in 
vertical and horizontal strips are extracted. The features are 
all new and showed excellent discrimination in the feature 
space. These features are given to SVM for classifying long, 
medium and close-up shots. One of the advantages of our 
method is that, close-ups can be detected in both in-field and 
out-of-field views. For detecting close-ups in out-of-field shots, 
the mean of shirt color in horizontal strips is used. Since the 
features are easy to extract and input frames are 
downsampled, the method works in real-time. The 
experimental results demonstrated the effectiveness of 
proposed method. 
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I. INTRODUCTION

Nowadays according to large number of audiences of 
sport events and broadcasting most of them in various 
multimedia networks, sport video processing has become an 
important part of video processing. In most sport video 
processing, the general aims are detection of significant 
events and summarization of game, to attain them, some 
intermediate processing is needed. Shot boundary detection 
and classification are examples of intermediate processing 
which are used for content filtering and redundancy 
reduction.  

The important key in sport video processing is speed, 
because the value of sport video drops significantly after a 
relatively short period of time [1]. To reach such a speed for 
extracting game events an approach which does not process 
all the frames and only needs key frames, should be 
considered. The best way for extracting these frames is 
classification of shots into classes such as long, medium and 
close-up. In general shot classification methods are divided 
to two categories. In the first category, proposed approaches 
are independent from sport type such as [2], but in the 
second one a specific sport is considered such as tennis [3] 
and soccer [4]. Since in the second approach, more 
appropriate features can be extracted for each particular 

sport, the results are usually better in comparison with the 
first one. 

In [5] a simple method for shot classification has been 
proposed which only uses field percent. The field percent 
less than a low-threshold considered as close-up, greater than 
a high-threshold considered as long and between these two 
values considered as medium. It is clear that the accuracy of 
this method is too low. In [6] a method has been proposed 
that its foundation is like [5], only when the field percent is 
greater than high-threshold, with using minimum bounding 
rectangle (MBR) and golden section spatial composition, 
two features are extracted and given to the Bayesian 
classifier. In addition to requirement of large amounts of 
training data, such a classification leads to failure in 
detection of many close-up frames with field background. 
Another method for classification of shots based on SVM 
has been presented in [7]. This method uses color 
distribution, edge distribution and shot length as features 
that, are given to SVM classifier. Not being real-time is the 
main problem of this method because shot classifying is not 
possible until the next shot appears and shot length would be 
computed, moreover errors of shot boundary detection affect 
directly the results of classification. In [8] a hierarchical 
classification has been presented which in the first level, 
according to audio features, important scenes are extracted. 
In the second level, based on field percent, field shots and 
out-of-field shots are separated and then each of these types 
is divided into subcategories. For example close-up is a 
subset of out-of-field shots. This method has the same 
problem in close-ups with field background that was told 
about [6]. In this classification medium shots have no distinct 
class but corner shots are separated from straights. 

In this paper, we propose a new method based on SVM 
which can classify main shots in soccer video analysis to 
close-up, medium, and long. Definition of these shots have 
been presented in [9], also Fig. 1 shows some examples of 
them. In addition to being real-time, high accuracy in 
classification is another advantage of this method. Fig. 2 
shows general structure of proposed method. At first out-of-
field shots, based on a threshold are separated from in-field 
ones, then for classifying long, medium, and close-up shots 
among in-field views, SVM classifier is used. Three features 
which we used are: 1) Number of connected components 
which are acceptable as player, 2) Maximum shirt color 
percent in four overlapped vertical strips in middle rectangle,
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(a) Long (b) Medium 

(c) In-field close-up (d) Out-of-field close-up 

Figure 1. Different shot types. 

3) mean of shirt color percent in two horizontal strips. They 
are all new and presented here for the first time. For 
detection of close-ups in out-of-field shots, a novel approach 
based on color of shirts in two horizontal strips is presented. 

The rest of this paper is organized as follows. In section 
II the proposed method is introduced in detail. In section III 
experimental results are presented. Section IV gives the 
conclusion of this paper. 

II. PROPOSED METHOD

Like most of methods, in the first step dominant color 
(field color) is extracted from a frame which has enough 
grass. For extracting dominant color, the method presented in 
[6] is used, in this method at first, frame is converted to the 
HSI format then the color mean is computed from histogram 
in each component. In each input frame, pixels which their 
cylindrical distance with this color mean is less than a 
threshold are considered as field pixel. If grass ratio for a 
frame is greater than a threshold , then it is given to the 
classifier, otherwise it is considered as out-of-field and 
checked if it is close-up or not. In our implementation, we set 

 to 5. 

A. Feature Extraction 
In this section three new features which are used for 

classifying long, medium, and close-up shots among in-field 
views are introduced. For extracting the first feature 
minimum bounding rectangle (MBR) of grass region is 
obtained from a binary frame. In Fig. 3-a an original frame is 
shown,  Fig. 3-b is its binary frame in which ones are grass 
pixels and zeros are non-grass pixels and Fig. 3-c shows the 
MBR. Now we are interested in connected components 
(CCs) of non-grass pixels which can be considered as 

. Such CCs have distinct height over width ratio and 
rational number of pixels which is shown in (1), the number 
of CCs satisfying these conditions is given by (2) 

Figure 2. General structure of proposed method. 

 is the set of all CCs and  is a member of it. , ,
and  are height, width, and number of pixels of 
respectively.  and  are the minimum and 
maximum of rational ratios for a player in long views. 
and  are the minimum and maximum of acceptable sizes 
for a player, is a subset of CCs which can be 
considered as player in long view, and also  is the 
number of members of player set. According to player 
properties in the long shots, for the , , , and 

 ,the values 1.5, 3.5 , 20, and 600 are assigned 
respectively. Fig. 3-d shows an example of acceptable CCs. 

For extracting second feature, middle rectangle which 
contains 0.7 of whole frame is considered, and then it is 
divided to four overlapping vertical strips. Overlapped 
section of each strip is 1/12 of the original frame width. Fig. 
4-a and Fig. 4-b show middle rectangle and vertical strips,  
respectively. Maximum percent of shirt colors in strips is 
computed as: 

where  is shirt color percent in  vertical strip, the shirt 
colors should be given to system in the beginning of the 
match. We gave it to our system by computing dominant 
color [6] from a piece of each team’s shirt.  is maximum of 
them and the second feature. 

For third feature, two horizontal strips with predefined 
height and distance from the bottom of frame are considered; 
Fig. 5 shows an example of these strips. Shirt color percent 
of both these strips computed and the average is obtained as:
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Figure 6. Representation of forty shots of each class in feature space. 

TABLE I. RESULTS OF PROPOSED METHOD (PM) AND EKIN’S
METHOD [6] FOR THE FIRST MATCH (SPAIN-GERMANY).

Shot 
Type 

#of  
Shots 

Correct  False Recall (%) Precision (%) 

PM [6] PM [6] PM [6] PM [6] 

Long 156 151 136 0 19 96.7 87.1 100 87.7 

Medium 124 121 106 9 77 97.5 85.4 93.0 57.9 

Close-up 
(in-field) 64 60 - 3 - 93.7 - 95.2 - 

Close-up 
(out-field) 82 77 - 1 - 93.9 - 98.7 - 

All 
 close-ups 
& out-
fields 

157 153 100 3 0 97.4 63.6 98.0 100 

TABLE II. RESULTS OF PROPOSED METHOD (PM) AND EKIN’S
METHOD [6] FOR THE SECOND MATCH (SPAIN-NETHERLANDS).

Shot 
type 

#of  
Shots 

Correct False Recall (%) Precision(%) 

PM [6] PM [6] PM [6] PM [6] 

Long 255 254 237 5 15 99.6 92.9 98.0 94.0 

Medium 178 163 158 7 112 91.5 88.7 95.8 58.5 

Close-up 
(in-field) 97 90 - 11 - 92.7 - 89.1 - 

Close-up 
(out-field) 144 142 - 9 - 98.6 - 94.0 - 

All 
 close-ups 
& out-
fields 

262 255 167 11 6 97.3 63.7 95.8 96.5 

the number of this type of shots is usually less than 20 per 
match and actually a little misclassification of this type 
(considered as close-ups) will not affect later processing. 

IV. CONCLUSION

In this paper, we proposed a new method for classifying 
shots based on SVM. The features are simple and 
meaningful; the first one comes from connected components 
which can be considered as player and the other two features 
are related to the shirt color of players. In addition to high

TABLE III. RESULTS OF PROPOSED METHOD (PM) AND METHOD IN 
[9] FOR THE MATCH REPORTED IN [9] (ENGLAND-SWEDEN). 

Shot type 
Recall (%) Precision (%) 

PM [9] PM [9] 

Long 95.2 93.6 97.5 97.9 

Medium 93.4 91.4 88.0 78.4 

Close-up 96.8 90.7 97.8 98.0 

Out-of-field 90.0 100 81.0 75.0 

accuracy, the method is also real-time because features are 
easy to extract and input shots are downsampled. Since two 
of features are using color, the method is sensitive to poor 
quality which with using subtle algorithms for obtaining 
dominant color, the effect of poor quality can be 
compensated. This method can be used for content filtering 
and highlights extraction in soccer video analysis. In the 
future, we will work on event detection and summarization 
of a game. 
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