
Neural Representations in Hybrid Recommender Systems:
Prediction versus Regularization

Ramin Raziperchikolaei

ramin.raziperchikola@rakuten.com

Rakuten, Inc.

San Mateo, CA, USA

Tianyu Li

litianyu0315@gmail.com

Rakuten, Inc.

Tokyo, Japan

Young-joo Chung

youngjoo.chung@rakuten.com

Rakuten, Inc.

San Mateo, CA, USA

ABSTRACT
Autoencoder-based hybrid recommender systems have become

popular recently because of their ability to learn user and item

representations by reconstructing various information sources, in-

cluding users’ feedback on items (e.g., ratings) and side information

of users and items (e.g., users’ occupation and items’ title). How-

ever, existing systems still use representations learned by matrix

factorization (MF) to predict the rating, while using representations

learned by neural networks as the regularizer. In this paper, we

define the neural representation for prediction (NRP) framework

and apply it to the autoencoder-based recommendation systems.

We theoretically analyze how our objective function is related to

the previous MF and autoencoder-based methods and explain what

it means to use neural representations as the regularizer. We also ap-

ply the NRP framework to a direct neural network structure which

predicts the ratings without reconstructing the user and item in-

formation. We conduct extensive experiments which confirm that

neural representations are better for prediction than regularization

and show that the NRP framework outperforms the state-of-the-art

methods in the prediction task, with less training time and memory.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
hybrid recommender systems, neural networks, regularization

ACM Reference Format:
Ramin Raziperchikolaei, Tianyu Li, and Young-joo Chung. 2021. Neural

Representations in Hybrid Recommender Systems: Prediction versus Regu-

larization. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’21), July 11–15,
2021, Virtual Event, Canada. ACM, Online, 5 pages. https://doi.org/10.1145/

3404835.3463051

1 INTRODUCTION
The goal of recommender systems is to help users identify the items

that best fit their personal tastes from a large set of items [15]. To

achieve this goal, recommender systems use different kinds of user

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8037-9/21/07. . . $15.00

https://doi.org/10.1145/3404835.3463051

and item information. One important source of information is the

feedback of users on items, which could be implicit (e.g., click on

a link, purchase) [3, 14, 15] or explicit (e.g., a rating between 1

and 5) [8, 15]. On e-commerce platforms, predicting users’ explicit

feedback (e.g., ratings on reviews) is more desirable because it

provides better insight about users’ preferences. Therefore, we

focus on predicting explicit feedback (i.e., ratings).

We focus on hybrid recommender systems, which use both feed-

back of the users on items and side information to make prediction

[1]. Side information of the users and items include the content

of items (e.g., category, title, description) and profile of users (e.g.,

age, location, gender), respectively. Using the feedback and side

information jointly helps the hybrid methods to overcome the limi-

tation of approaches that use either feedback or side information,

and achieve state-of-the-art results [10, 11].

More specifically, assume we have a sparse rating matrix R ∈

Rm×n
, wherem and n are the number of users and items, respec-

tively, Rjk > 0 is the rating of the user j on the item k , and Rjk = 0

means the rating is unknown. Assume the side information of all

the users and items are represented by X and Y, respectively. The
goal of hybrid methods is to predict the unknown ratings using the
known ratings and the user and item side information.

Deep neural networks have become popular in designing hy-

brid recommendation methods, mainly because of their ability in

learning good representations. One of the most widely used neural

network structures in recommender systems has been (denoising)

autoencoders [2, 9, 10, 16, 18, 20, 21]. These methods define gu (),
fu (), gi (), f i () as the user’s encoder, user’s decoder, item’s encoder,

and item’s decoder, respectively. The outputs of the encoders gu ()
and gi () are the learned neural representations of the users and

items. They also consider U ∈ Rm×d
and V ∈ Rn×d as the d-

dimensional representations of the users and items, respectively.

Their objective function can then be written as:

min

U,V,θ
L(fu (gu (R,X)))+L(f i (gi (R,Y)))+λ1

∑
j,k

1Rjk | |Rjk−Uj, :VTk, : | |
2

+ λ2 | |U − gu (R,X)| |2 + λ3 | |V − gi (R,Y)| |2 + reg. terms, (1)

where θ = [θ f u ,θдu ,θ f i ,θдi] contains all the parameters of the

two autoencoders and Uj, : denotes the ith row of the matrix U. The
indicator function 1Rjk returns 1 when Rjk > 0, and 0 otherwise.

The rating of the user j on itemk is approximated by the dot product

of the Uj, : and Vk, :.
We divide the objective function of Eq. (1) into three parts: 1)

the reconstruction losses in the first two terms try to reconstruct

the ratings and the side information of the users and items, 2) the

MF in the third term decomposes the rating matrix into user and

https://doi.org/10.1145/3404835.3463051
https://doi.org/10.1145/3404835.3463051
https://doi.org/10.1145/3404835.3463051

item representations, which will be used for the prediction later,

and 3) the fourth and fifth terms try to keep the representations

learned by MF in some distance from the neural representations.

As we argue in Section. 3, these terms play the role of regularizer,

which keep the representations from converging to the solution of

MF. The hyper-parameters λ2 and λ3 determine how far the two

representations should be from each other.

The main issue of this formulation is that the motivation behind

using neural representation as the regularizer is unclear. Also, it

is difficult to decide how far/close the neural and MF representa-

tions should be from each other, i.e., it is difficult to set the hyper-

parameters λ2 and λ3.

In this paper, we introduceNeuralRepresentation for Prediction
(NRP) framework that learns one set of user and item representa-

tions from the neural networks and uses them for the prediction

directly, instead of using them as the regularizer. We apply NRP to

the autoencoder structure, analyze its objective function and opti-

mal solution, and compare it with the previous approaches based

on autoencoder and MF. We also introduce a direct neural network

structure integrated with our framework to obtain more expressive

power and training efficiency. Our experiments show that 1) neural

representations perform better in prediction than regularization

and 2) the direct neural network structure outperforms previous

methods, while having faster training and less memory usage.

2 RELATEDWORK
Collaborative filtering (CF) methods learn users’ preferences from

the patterns in the past interactions between the users and items.

Matrix factorization (MF), a well-known CF method, decomposes

the rating matrix into two low-rank user and item matrices (rep-

resentations), such that the dot product of the representations ap-

proximates the rating matrix [7, 8, 19]. Since the CF methods only

uses the past user-item interactions, their performance degrades

significantly when the rating matrix is highly sparse or when we

have new users and items in the system (cold-start problem) [15].

Hybrid methods address this issue by using the past interactions

and the side information jointly to predict the future ratings. The

autoencoder-based hybrid methods apply the autoecnoder structure

to extract features from side information and combine such features

with the feedback pattern to predict ratings [2, 9, 10, 18, 20, 21].

Recent works [2, 9, 10] utilize side information and ratings of

users/items by training two autoencoders. As explained in the intro-

duction, these methods use MF’s representations for the prediction.

There are also cases where the MF and neural representations are

mixed for prediction. In CDL [20] and AutoSVD [21], the item’s

representation comes from the autoencoder and the user’s represen-

tation comes from the MF. These methods use the side information

of the items as the only source of information, and use dot product to

combine the representations. In our method, both users’ and items’

representations are generated from the neural network, where the

inputs are the user/item rating vectors and side information.

3 OUR PROPOSED METHOD
Our main idea is to remove the MF terms and use the neural

representations of the users and items for the prediction task.

For concision, we call our method NRP, which stands for Neural

Representation for Prediction. We first apply our framework to the

autoencoder structure and show how it is related to the previous

autoencoder-based methods. Then, we integrate this framework

with a direct neural network structure.

3.1 NRP with autoencoders
Similar to the previousworks, ourmodel contains two autoencoders,

one for the users and one for the items. The difference is that the

encoders’ outputs are the only user/item representations in our

model. Here is our objective function:

min

θ
L(fu (gu (R,X))) + L(f i (gi (R,Y)))+ (2)

λ1

∑
j,k

1(Rjk > 0)| |Rjk − gu (Rj, :,Xj, :)
T gi (R

:,k ,Yk, :)| |
2.

To have an apple-to-apple comparison between our approach

and the previous ones, we use the same loss functions and the

decoder and encoder structures as aSDAE [2] and DHA [10].

Our objective in Eq. (2) gives three advantages over the previ-

ous works: 1) the hyper-parameters λ2 and λ3, from Eq. (1), are

removed, 2) the number of parameters decreased as we removed U
and V, which helps in faster training and saving memory, and 3) the

network can be trained end-to-end, as there is no need to optimize

over U and V. In Section 4. we will see that these advantages lead

to better prediction performance.

We now analyze the objective function of Eq. (2), compare it with

the one in Eq. (1), and explain why the neural representations act

as a regularizer in previous works. First, we rewrite our objective

in (2) as follows:

min

θ,U,V
Q(θ ,U,V) = L(fu (gu (R,X))) + L(f i (gi (R,Y)))+

λ1

∑
j,k

1Rjk | |Rjk − UTj, :Vk, : | |
2
s.t. U = gu (R,X), V = gi (R,Y). (3)

The objective functions in Equations (2) and (3) are equivalent, so

we focus on comparing (3) with (1).

We consider two special cases of the objective function in Eq. (1).

First, consider the case where λ2 = λ3 = 0, whichmakes the last two

terms 0. The first two terms can also be removed since they do not

contain the user/item representations U and V. So only the MF term

remains. The second case is when λ2 = λ3 → ∞. The following

theorem shows that in this case the two objective functions in (1)

and (3) will be equivalent (i.e. they have the same optimal solution).

Theorem 3.1. The objective function of Eq. (1), with λ2 = λ3 → ∞,
has the same optimal solution as the objective function of Eq. (3).

Proof. We define a vector p = [θ ,U,V], containing all the pa-

rameters of the problem. Note that Q(p), defined in Eq. (3), con-

tains the first three terms of Eq. (1) and contains all the terms of

Eq. (3). We assume that p̄ = [¯θ , Ū, V̄] is the optimal solution of

Eq. (3) and p∗ = [θ∗,U∗,V∗] is the optimal solution of Eq. (1) when

λ2 = λ3 → ∞. We replace p∗ and p̄ in Eq. (1) to get the following

inequality:

lim

λ2→∞
Q(p∗)+λ2 | |U∗−gu (R,X;θ∗дu)| |

2+λ3 | |V∗−gi (R,Y;θ∗дi)| |
2 ≤

Q(p̄) + λ2(| |Ū − gu (R,X;
¯θдu)| |

2 + | |V̄ − gi (R,Y, ¯θдi)| |
2) = Q(p̄) (4)

The right side of the above inequality is Q(p̄) since p̄ is the optimal

solution of Eq. (3) and satisfies the constraints. By rearranging the

last equation we obtain

| |U∗ − gu (R,X;θ∗дu)| |
2 + | |V∗ − gi (R,Y,θ∗дi)| |

2 ≤

lim

λ2→∞

Q(p̄) −Q(p∗)
λ2

= 0. (5)

To satisfy the inequality, i.e., making the sum of the norms 0, both

norms have to be 0. This means that p∗ is a feasible vector, i.e.

U∗ = gu (R,X;θ∗дu) and V∗ = gi (R,Y,θ∗дi). By considering feasi-

bility of p∗ in Eq. (4) (i.e., replacing U∗
by gu (R,X;θ∗дu) and V∗

by gi (R,Y,θ∗дi) in Eq. (4)), we get Q(p∗) ≤ Q(p̄). Note that we as-
sumed that p̄ is the optimal solution of Eq. (3), so for two feasible

points p̄ and p∗ we have Q(p∗) ≥ Q(p̄). So the conclusion is that

Q(p∗) = Q(p̄). In other words, for λ2 = λ3 → ∞, the objective

functions of the Eq. (1) and Eq. (3) become equivalent. □
By setting λ2 = λ3 = 0 and increasing it to λ2 = λ3 → ∞, a path

of solutions will be created, between the solution of the MF and our

NRP autoencoder. The previous autoencoder methods use a fixed

λ2 > 0 and λ3 > 0, so their optimal solution lies somewhere on

the path. The smaller (larger) these hyper-parameters, the closer

(farther away) the solution of the autoencoder-based methods will

be to the MF’s solution. From this analysis, we believe the neural
representations act as the regularizer in previous works since they are
only used to keep U and V away from the MF’s optimal solution.

A question arises here: can we optimize the objective of Eq. (1)

with λ2 = λ3 → ∞ and expect to get the same result as our objective

function in Eq. (2)? In practice, this will not happen for two reasons.

First, as we set λ2 = λ3 → ∞, the Hessian of the objective function

in Eq. (1) becomes ill-conditioned and the first-ordermethods iterate

zigzag and slowly approach toward the optimal solution. The reason

is that some eigenvalues of the Hessian will be in the order of

∞, while the other ones will be small. More information can be

found in Chapter 17.1 of [12]. Second, note that we have proved the

equivalency of Eq. (1) and (2) in terms of their optimal solutions. In

practice, the objective functions are highly non-convex and we can

expect the methods to end up close to a local solution.

3.2 NRP with a direct structure
We define the direct structure as a neural network structure without

the decoders, which predict the ratings without reconstructing the

user/item ratings and side information. Our goal of designing the

direct structure and combining it with NRP framework is to use it

as a baseline. The comparison between the direct structure and the

autoencoder-based methods let us know the effectiveness of the

reconstruction based methods in hybrid recommendation systems.

Our direct structure is achieved by making two modifications

to our autoencoder structure. First, we remove the decoders from

the structure, which leads to saving around 50% of memory and

faster optimization. Second, we use a set of fully connected layers

to predict the final rating, instead of the dot product. This makes

our model more expressive with a relatively small number of ad-

ditional parameters. In the following, we detail how to learn the

representations and learn the ratings with the direct structure.

Learning the user and item representations. We focus on the user

representation, as the item representation can be learned in the

same way. One source of information is the ratings of the users on

items. For the jth user, Rj, : contains the ratings of this user on all

items. We give this as the input to a set of fully connected layers

and get the rating representation, denoted by gu
r
(Rj, :).

The side information of the jth user, denoted by Xj, :, will be

given as the input to another neural network, which maps it to a

low-dimensional representation, denoted by gu
s
(Xj, :).

The final representation for the jth user is achieved by con-

catenating the two representations above. We show this by zj =
[gu

r
(Rj, :), gus (Xj, :)], where [] is used for concatenation of the vec-

tors. We can get the kth item representation zk in a similar way,

using item interaction vector and item side information Y.
Learning the rating. We concatenate the user and item repre-

sentations to get the joint representation zjk , which is connected

to a neural network to predict the final rating. We show this last

neural network byh(). We define the objective function as the mean

squared error between the output of h() and the true rating:

1

mn
min

θ

m∑
j=1

n∑
k=1

1(Rjk > 0)| |Rjk − h(zjk))| |
2 + λ1 | |θ | |

2
s.t.

zjk = [zj , zk], zj = [gu
r
(Rj, :), gus (Xj, :)], zk = [gi

r
(R

:,k), g
i
r
(Yk, :)].

We jointly optimize all parameters of the neural network using

stochastic gradient descent. Note that our method works as long as

we have at least one source of information for users and one source

of information for items.

4 EXPERIMENTS
For each dataset, we randomly select 80% of the ratings as the train-

ing set, 10% as the validation set, and 10% as the test set. We repeat

the process three times to create three training/validation/test sets

and report the mean and standard deviation of each method on

these three sets. Unless otherwise stated, we use bag of words (BoW)

to represent the item and user side information.

Datasets. We use three datasets in our experiments. The ml100k

[4] contains 100 000 ratings (1 to 5) from around 1 000 users on 1 600

movies. The user side information contains age, gender, occupation,

and zip code and the item side information contains the movie title

and the genre. The ml1m [4] dataset contains 1 million ratings of

around 6 000 users on 4 000movies. The content of the user and item

side information are the same as ml100k. Ichiba dataset contains

1.5 million Rakuten Ichiba
1
’s product review from 324 000 users on

294 000 items. The user side information contains age and gender

and the item side information contains the category.

Evaluation metrics. We report the root mean square error (RMSE)

and average precision to evaluate the rating prediction performance.

In RMSE we measure the error between the predicted and actual

rating. In precision, for each user, we retrieve the top p% of the

items with the highest predicted ratings and compare them with

the actual top p% of items. We compute the precision for each user

and report the average score.

Additional experiments and experimental settings. The extended
version of this paper[13] contains additional experimental results,

including precision on multiple datasets, and contains experimental

1
https://rit.rakuten.co.jp/data_release/

https://rit.rakuten.co.jp/data_release/

Table 1: Our NRP framework achieves better prediction re-
sults, faster training, and less memory usage compared to
the autoencoder-basedmethods. The first/second number in
the fourth column is the number of parameters involved in
learning the neural network’s/MF’s representations. Time
refers to the training time per epoch.

.ml1m dataset

method RMSE precision # params. time

MF 0.892 ± 0.004 68.2% ± 0.3 (0, 1M) 45s

DHA 0.865 ± 0.001 69.3% ± 0.2 (44M, 1M) 1 097s

NRPDHA 0.855 ± 0.002 69.6% ± 0.2 (44M, 0) 1 027s

aSDAE 0.879 ± 0.005 69.0% ± 0.1 (66M, 1M) 1 155s

NRPaSDAE 0.877 ± 0.008 68.5% ± 0.4 (66M, 0) 1 055s

ACCM 0.856 ± 0.002 69.5% ± 0.3 (11.5M, 0) 450s

ACCMMLP 0.865 ± 0.002 68.9% ± 0.2 (11.8M, 0) 470s

NRPdirect 0.851 ± 0.001 70.0% ± 0.1 (22M, 0) 640s

settings, including all the hyper-parameters in the experiments. The

source code is available at https://rit.rakuten.co.jp/oss/.

Neural representations are better in prediction than regularization.
In Table 1, we compare our proposed method with matrix factoriza-

tion (MF), the autoencoder-based methods, DHA [10] and aSDAE

[2], and the attention-based direct structure, ACCM [17], on the

ml1m dataset. We also replaced the dot product of ACCM with

MLP, denoted by ACCMMLP in Table 1. Our framework applied to

the same encoder-decoder structure as DHA and aSDAE are called

NRPDHA and NRPaSDAE, respectively. Our framework applied to

the direct structure is called NRP
direct

.

MF has the worst performance (the largest RMSE), which means

that MF formulation with the L2 norm of weights as the regulariza-

tion is not enough for the rating prediction. By setting the hyper-

parameters carefully, both DHA and aSDAE outperform MF, which

suggests that the neural network’s representations are better regu-

larizers than the L2 norm of the weights. Our methods NRPDHA and

NRPaSDAE outperform the original DHA and aSDAE, respectively,

in terms of RMSE and precision. This improvement comes from

removing the MF terms, relying on neural representations, and stay-

ing inside the feasible set of neural network’s output. ACCM, the

direct structure of Shi et al. [17], outperformsMF, DHA, and aSDAE,

but shows similar performance to the NRPDHA. Finally, NRPdirect

has the best performance and outperforms all autoencoder-based

methods. This shows that removing the decoders, making the neu-

ral network free of reconstructing the inputs, and replacing the dot

product with MLPs lead to learning a better model.

Note that NRP
direct

outperforms ACCM because of 1) using inter-

action vectors as the input instead of IDs and 2) using MLPs, instead

of the dot product, to map the joint representation to the rating.

To show the importance of using interaction vector as the input,

we have replaced the dot product of ACCM with MLPs, denoted

by ACCMMLP in Table 1. ACCMMLP performs slightly worse than

ACCM in ml1m. NRP
direct

outperforms ACCMMLP.

The last two columns of Table 1 compare the number of learn-

able parameters and training time per epoch of each method. DHA

Table 2: RMSE of ourNRP framework comparedwith the hy-
brid and collaborative filtering methods. Our approach out-
performs the rest of the methods.

method ml100k ml1m Ichiba

MF [8] 0.940 ± 0.003 0.892 ± 0.0004 1.00 ± 0.104

Autorec [16] 0.921 ± 0.002 0.889 ± 0.0003 2.47 ± 0.059

NeuMF [5] 0.948 ± 0.005 0.886 ± 0.001 0.900 ± 0.004

DSSM [6] 0.934 ± 0.002 0.941 ± 0.0004 0.913 ± 0.003

DHA [10] 0.939 ± 0.002 0.865 ± 0.001 OM

NRPDHA 0.926 ± 0.004 0.855 ± 0.002 OM

aSDAE [2] 0.946 ± 0.005 0.879 ± 0.005 OM

NRPaSDAE 0.910 ± 0.008 0.877 ± 0.008 OM

HIRE [11] 0.930 ± 0.006 0.861 ± 0.004 OM

NRP
direct

0.897 ± 0.003 0.851 ± 0.001 0.889 ± 0.002

and aSDAE have the largest memory usage and training time, as

they optimize the two representations alternatively. NRPDHA and

NRPaSDAE achieve better training time and memory than DHA and

aSDAE, respectively. Among the neural network-based methods,

the direct structures, ACCM and NRP
direct

, have the fastest training

and lowest memory usage because of their simple structure. Note

that NRP
direct

has a larger number of parameters than ACCM. This

is because NRP
direct

uses MLPs to learn low-dimensional represen-

tations, while ACCM uses embedding layers.

Comparison with other hybrid and collaborative filtering methods.
We compare RMSE of our method with several baselines and recent

works in Table 2. We slightly modified NeuMF [5] and DSSM [6]

to make them work with explicit feedback. We can see that our

method achieves the best results on different datasets.

We got an out-of-memory (OOM) error in the training of HIRE,

DHA, and aSDAE in Ichiba dataset. HIRE’s code (publicly available

by the authors) needs the entire interaction matrix in training,

which can not be stored in memory for the Ichiba datasets. DHA

and aSDAE reconstruct the users’ and items’ interaction vectors.

This makes the first and the last layer of their autoencoders huge

in the Ichiba dataset and makes their model’s size larger than the

12GB memory of our GPU.

5 CONCLUSION
The current autoencoder-based hybrid recommender systems learn

matrix factorization-based representations for the prediction task

and neural networks-based representation for the regularization. In

this paper, we proposed a new framework that uses the neural net-

works’ representation directly for the prediction task. We showed

that by applying our approach to the same autoencoder structure

as previous works, we can achieve faster training and better per-

formance. We also proposed a new framework by removing the

decoders and replacing dot product with MLP in autoencoders. Our

approach combined with the proposed framework outperformed

the previous works. It also had a fast training and small memory

usage compared to the autoencoder-based methods.

https://rit.rakuten.co.jp/oss/

REFERENCES
[1] Robin Burke. 2007. Hybrid Web Recommender Systems. In The Adaptive Web:

Methods and Strategies of Web Personalization. Springer Berlin Heidelberg, 377–

408. https://doi.org/10.1007/978-3-540-72079-9_12

[2] Xin Dong, Lei Yu, Zhonghuo Wu, Yuxia Sun, Lingfeng Yuan, and Fangxi Zhang.

2017. A hybrid collaborative filtering model with deep structure for recommender

systems. In Thirty-First AAAI Conference on Artificial Intelligence.
[3] Zhi-HongDong, Ling Huang, Chang-DongWang, Jian-Huang Lai, and Philip S Yu.

2019. DeepCF: A Unified Framework of Representation Learning and Matching

Function Learning in Recommender System. In AAAI Conference on Artificial
Intelligence.

[4] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets. ACM
Transactions on Interactive Intelligent Systems 5, 4 (dec 2015), 1–19. https://doi.

org/10.1145/2827872

[5] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web Conferences

Steering Committee, 173–182.

[6] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry

Heck. 2013. Learning deep structured semantic models for web search using

clickthrough data. In International conference on Conference on information &
knowledge management(CIKM). ACM Press. https://doi.org/10.1145/2505515.

2505665

[7] Yehuda Koren. 2008. Factorization meets the neighborhood:a Multifaceted

Collaborative Filtering Model. In Proceeding of the 14th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining - KDD. ACM Press.

https://doi.org/10.1145/1401890.1401944

[8] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization

Techniques for Recommender Systems. Computer 42, 8 (aug 2009), 30–37.

https://doi.org/10.1109/mc.2009.263

[9] Sheng Li, Jaya Kawale, and Yun Fu. 2015. Deep Collaborative Filtering via

Marginalized Denoising Auto-encoder. In Proceedings of the 24th ACM Interna-
tional on Conference on Information and Knowledge Management - CIKM. ACM

Press. https://doi.org/10.1145/2806416.2806527

[10] Tianyu Li, Yukun Ma, Jiu Xu, Bjorn Stenger, Chen Liu, and Yu Hirate. 2018. Deep

Heterogeneous Autoencoders for Collaborative Filtering. In IEEE International
Conference on Data Mining (ICDM).

[11] Tianqiao Liu, Zhiwei Wang, Jiliang Tang, Songfan Yang, Gale Yan Huang, and

Zitao Liu. 2019. Recommender Systems with Heterogeneous Side Information.

In The World Wide Web Conference on (WWW). ACM Press. https://doi.org/10.

1145/3308558.3313580

[12] Jorge Nocedal and Stephen Wright. 2006. Numerical Optimization. Springer.
[13] Ramin Raziperchikolaei, Tianyu Li, and Young joo Chung. 2020. Neural Repre-

sentations in Hybrid Recommender Systems: Prediction versus Regularization.

arXiv:2010.06070 [cs.IR]

[14] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI).

[15] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor (Eds.). 2011.

Recommender Systems Handbook. Springer US. https://doi.org/10.1007/978-0-

387-85820-3

[16] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015.

AutoRec: Autoencoders Meet Collaborative Filtering. In Proceedings of the 24th
International Conference on World Wide Web. ACM Press. https://doi.org/10.1145/

2740908.2742726

[17] Shaoyun Shi, Min Zhang, Yiqun Liu, and Shaoping Ma. 2018. Attention-based

Adaptive Model to Unify Warm and Cold Starts Recommendation. In Proceed-
ings of the 27th ACM International Conference on Information and Knowledge
Management (CIKM). ACM. https://doi.org/10.1145/3269206.3271710

[18] Florian Strub, Romaric Gaudel, and Jérémie Mary. 2016. Hybrid Recommender

System based on Autoencoders. In Proceedings of the 1st Workshop on Deep
Learning for Recommender Systems - DLRS 2016. ACM Press. https://doi.org/10.

1145/2988450.2988456

[19] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. 2008. Matrix

factorization and neighbor based algorithms for the netflix prize problem. In

Proceedings of the 2008 ACM conference on Recommender systems - RecSys. ACM
Press. https://doi.org/10.1145/1454008.1454049

[20] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative Deep Learning

for Recommender Systems. In International Conference on Knowledge Discovery
and Data Mining (KDD). ACM Press. https://doi.org/10.1145/2783258.2783273

[21] Shuai Zhang, Lina Yao, and Xiwei Xu. 2017. AutoSVD++:An Efficient Hybrid

Collaborative Filtering Model via Contractive Auto-encoders. In Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM Press. https://doi.org/10.1145/3077136.3080689

https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1109/mc.2009.263
https://doi.org/10.1145/2806416.2806527
https://doi.org/10.1145/3308558.3313580
https://doi.org/10.1145/3308558.3313580
https://arxiv.org/abs/2010.06070
https://doi.org/10.1007/978-0-387-85820-3
https://doi.org/10.1007/978-0-387-85820-3
https://doi.org/10.1145/2740908.2742726
https://doi.org/10.1145/2740908.2742726
https://doi.org/10.1145/3269206.3271710
https://doi.org/10.1145/2988450.2988456
https://doi.org/10.1145/2988450.2988456
https://doi.org/10.1145/1454008.1454049
https://doi.org/10.1145/2783258.2783273
https://doi.org/10.1145/3077136.3080689

	Abstract
	1 Introduction
	2 Related work
	3 Our proposed method
	3.1 NRP with autoencoders
	3.2 NRP with a direct structure

	4 Experiments
	5 Conclusion
	References

