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Recommender systems

Recommender systems take a user and an item as the inputs and returns the estimated rating.

There are 𝑚 users and 𝑛 items.

The sparse rating matrix is 𝑚 by 𝑛, denoted by

is the rating of the user 𝑗 on the item 𝑘, 
and                 means the rating is unknown.

The explicit ratings are integers between 1 (not 
recommended) and 5 (highly recommended).

Goal: predict the unknown ratings.

R 2 Rm⇥n
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Item 1 Item 2 Item 3 .    .    . Item n

User 1 1 ? ? ? ?

User 2 ? 5 ? ? ?

User 3 ? ? ? 2 ?

… ? ? ? ? ?

User m ? 2 ? ? 3
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Hybrid recommender systems

Hybrid recommender systems use user and item ratings and content information (age, occupation, 
title, reviews, etc.) to predict the ratings.
Neural network-based methods have been used to learn better representations.
The most widely-used neural network structure in recommender systems has been (denoising) 
autoencoders:

• Sedhain et al., AutoRec: Autoencoders meet collaborative filtering, World Wide Web 2015.
• Li et al., Deep collaborative filtering via marginalized denoising autoencoder, CIKM 2015.
• Strub et al., Hybrid recommender system based on autoencoders, DLRS 2016.
• Dong et al., A hybrid collaborative filtering model with deep structure for recommender systems, AAAI 2017
• Zhang et al, AutoSVD++:an efficient hybrid collaborative filtering model via contractive autoencoders, SIGIR 2017

• Li et al., Deep heterogeneous autoencoders for collaborative filtering, ICDM 2018

Existing systems still use representations learned by matrix factorization (MF) to predict the rating, 
while using representations learned by neural networks as the regularizer.
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Previous autoencoder-based methods 

User input sources (ratings and side info)

User neural representation

Encoder

Decoder

Reconstructed inputs sources

Item input sources (ratings and side info)

Item neural representation

Encoder

Decoder

Reconstructed item sources

User and item representations from 
Matrix Factorization (MF)

U
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Autoencoder-based hybrid recommender systems

The idea is to predict the ratings and reconstruct the user/item sources of information simultaneously.
contains users’ side information, such as age, occupation, location, etc.
contains users’ side information, such as price, title, reviews, etc.

The MF term is used for prediction and the neural representations are used for the regularization purpose.
The hyper-parameters 𝜆! and 𝜆" determine how close the two representations should be from each other.
Issues: lack of motivation behind using neural representations as the regularizer and slow optimization.

Deep neural networks have become popular in designing hybrid recommendation methods, mainly37

because of their ability in learning good representations. The most widely-used neural network38

structure in recommender systems has been (denoising) autoencoders [3, 14, 15, 21, 24, 26, 29].39

These methods define gu(), fu(), gi(), f i() as the user’s encoder, user’s decoder, item’s encoder,40

and item’s decoder, respectively. The output of the encoders gu() and gi() are the learned neural41

representations of the users and items. They also consider U 2 Rm⇥d and V 2 Rn⇥d as the42

d-dimensional representations of the users and items, respectively. Their objective function can then43

be written as:44

min
U,V,✓

L(fu(gu(R,X))) + L(f i(gi(R,Y))) + �1

X

j,k

(Rjk > 0)||Rjk �Uj,:V
T
k,:||2+

�2||U� gu(R,X)||2 + �3||V � gi(R,Y)||2 + reg. terms, (1)
where ✓ = [✓fu ,✓gu ,✓fi ,✓gi ] contains all the parameters of the two autoencoders and Uj,: denotes45

the jth row of the matrix U. The indicator function (arg) returns 1 when arg is true, and 046

otherwise. The rating of the user j on item k is approximated by the dot product of the Uj,: and Vk,:.47

We divide the objective function of Eq. (1) into three parts: 1) The reconstruction losses in the first48

two terms trying to reconstruct the ratings and the side information of the users and items, 2)The49

MF in the third term decomposing the rating matrix into user and item representations, which will50

be used for the prediction later, and 3) The fourth and fifth terms trying to keep the representations51

learned by MF in some distance from the neural representations. As we argue in Section. 3 the fourth52

and the fifth terms play the role of regularizer, where they keep the representations from converging53

to the solution of MF. The hyper-parameters �2 and �3 determine how close the two representations54

should be from each other.55

Note that the reconstruction loss in Eq. (1) is slightly different from one work to the others. In [14],56

each autoencoder reconstructs the repeated versions of the side information. In [3], each autoencoder57

reconstructs both the ratings and the side information, where the side information has been added to58

each layer of the network. [15] proposed to reconstruct multiple sources of side information of the59

users and items, in addition to the ratings.60

Autoencoder-based methods optimize the objective of Eq. (1) by alternating over the following two61

steps: 1) fix the network parameters and optimize over U and V and 2) fix U and V and train the62

parameters of the two autoencoders.63

This approach has three main issues. First, the motivation behind using neural representation for64

the regularization purpose is unclear. Also, it is difficult to decide how far/close the neural and65

MF representations should be from each other, i.e., it is difficult to set the hyper-parameters �266

and �3. Second, optimization is difficult and time-consuming because 1) the autoencoders have67

many parameters, 2) the matrices U and V are huge, and 3) the matrices and parameters need to be68

optimized several times in alternation. Third, the dot product to predict ratings from representations69

U and V might not be sufficient to combine the two representations.70

To solve the above issues, we define the Neural Representation for Prediction (NRP) framework71

that learns one set of user and item representations from the neural networks and uses them for the72

prediction directly, instead of using them as the regularizer. Here are the contributions of our paper:73

• We apply the NRP framework to the autoencoder structure, analyze its objective function74

and optimal solution, and compare it with the previous approaches based on autoencoder75

and MF.76

• We introduce a direct neural network structure integrated with our framework that obtains in77

more expressive power and training efficiency.78

• We conduct experiments on two MovieLens datasets and two real-world e-commerce79

datasets and demonstrate that 1) neural representations perform better in prediction than80

regularization and 2) the direct neural network structure combined with the NRP framework81

outperforms previous methods, while having faster training and less memory usage.82

2 Related work83

Factorization models. Matrix factorization (MF) decomposes the rating matrix into two low-rank84

user and item matrices (representations), such that the dot product of the representations approximates85
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Our approach: neural representations as the predictors

In our approach, the encoders' outputs are the only user/item representations in our model:

Advantages:
1) The hyper-parameters 𝜆! and 𝜆" are removed, which leads to less time in hyper-parameter 

tuning.
2) The number of parameters decreased as we removed   and .
3) The network can be trained end-to-end.

the rating matrix[12, 13, 25]. Since MF only uses the ratings, its performance degrades significantly86

when the rating matrix is hugely sparse or when we have new users or items in the system [20].87

Autoencoders for hybrid recommender systems. These methods use the autoencoder structure88

to extract features from side information and combine such features with the feedback pattern to89

predict ratings.[3, 14, 15, 24, 26, 29]. Recent works [3, 14, 15] utilize all the side information90

and ratings of users/items by training two autoencoders. As explained in the introduction, these91

methods use MF’s representations for the prediction. There are also cases where the MF and neural92

representations are mixed for prediction. In CDL [26] and AutoSVD [29], the item’s representation93

comes from the autoencoder and the user’s representation comes from the MF. These methods use94

the side information of the items as the only source of information, and use dot product to combine95

the representations. In our method, both users’ and items’ representations are generated from the96

neural network, where the inputs are the user/item rating vectors and side information.97

Deep learning to model implicit feedback in collaborative filtering. DMF [27], NeuMF [10],98

and DeepCF [4] are examples of the recent works which combine the deep networks and collaborative99

filtering (CF) to predict the implicit feedback. These methods do not use the autoencoder structure, as100

the goal of autoencoders is to extract representations from the side information. Our method differs101

from these methods in several ways. First, our approach is a general framework that can be applied to102

different network structures, such as autoencoders. Second, our method uses both side information103

and ratings to predict the ratings, while the input to the CF-based methods is ratings and/or ids. Third,104

our approach learns a single representation per user and item, while NeuMF and DeepCF learn two105

representations. Our method uses an MLP to map the representations to prediction, while DMF uses106

dot product.107

Deep learning for content-based recommendation The main idea is to extract representations108

from the side information such as users’ profiles and items’ descriptions. DSSM [11] maxi-109

mizes/minimizes the similarity between the representations of the query and the clicked/not-clicked110

documents. MV-DNN [5] is an extension of the DSSM, where the document has multiple views. The111

problem definition here is different from ours, as these methods do not consider the previous ratings112

of the users on items.113

Deep Learning for high-order interactions. In web/app recommender systems, the input usually114

comes in the form of high-dimensional and sparse categorical features. Factorization Machines [18]115

proposed to model high-order interactions by learning an embedding vector per feature. This idea116

has been combined with the embedding layer of the neural networks in several recent works, such117

as Wide&Deep[2], NFM [9], and DeepFM[6]. Similar to the content-based methods, the problem118

definition is different from us, as these methods do not consider the past ratings of the users on items.119

3 Our proposed method120

Our main idea is to remove the MF terms and use the neural representations of the users and items for121

the prediction task. For concision, we call our method NRP, which stands for Neural Representation122

for Prediction. We first apply the NRP framework to the autoencoder structure and show how it is123

related to the previous autoencoder-based methods. Then, we integrate this framework with a direct124

neural network structure.125

3.1 NRP with autoencoders126

Similar to the previous works, our model contains two autoencoders, one for the users and one for127

the items. The difference is that the encoders’ outputs are the only user/item representations in our128

model. Here is our objective function:129

min
✓

L(fu(gu(R,X))) + L(f i(gi(R,Y)))+

�1

X

j,k

(Rjk > 0)||Rjk � gu(Rj,:,Xj,:)
Tgi(R:,k,Yk,:)||2. (2)

To have an apple-to-apple comparison between our approach and the previous ones, we use the same130

loss functions and the decoder and encoder structures as aSDAE [3] and DHA [15].131

Our objective in Eq. (2) gives three advantages over the previous works: 1) the hyper-parameters �2132

and �3, from Eq. (1), are removed, 2) the number of parameters decreased as we removed U and133

3

V, which helps in faster training and saving memory, and 3) the network can be trained end-to-end,134

as there is no need to optimize over U and V. We will see later that these advantages lead to better135

prediction performance.136

We now analyze the objective of Eq. (2), compare it with the one in Eq. (1), and explain why the137

neural representations act as a regularizer in previous works. We rewrite our objective in (2) as:138

min
✓,U,V

Q(✓,U,V) =L(fu(gu(R,X))) + L(f i(gi(R,Y))) + �1

X

j,k

(Rjk > 0)||Rjk �UT
j,:Vk,:||2

s.t. U = gu(R,X) and V = gi(R,Y). (3)

The objective functions in Equations (2) and (3) are equivalent, so we focus on comparing (3) with139

(1). We consider two special cases of the objective function in Eq. (1). First, consider the case where140

�2 = �3 = 0, which makes the last two terms 0. The first two terms can also be removed since they141

do not contain the user/item representations U and V. So only the MF term remains.142

The second case is when �2 = �3 ! 1. The following theorem shows that in this case the two143

objective functions in (1) and (3) will be equivalent (i.e. they have the same optimal solution).144

theorem 1. The objective function of the Eq. (1), with �2 = �3 ! 1, has the same optimal solution145

as the objective function of the Eq. (3).146

Proof. Let us define a new vector p = [✓,U,V], containing all the parameters of the problem. Note147

that Q(p), defined in Eq. (3), contains the first three terms of Eq. (1) and contains all the terms of148

Eq. (3). We assume that p̄ = [✓̄, Ū, V̄] is the optimal solution of (3) and p⇤ = [✓⇤,U⇤,V⇤] is the149

optimal solution of the Eq. (1) when �2 = �3 ! 1. We replace p⇤ and p̄ in Eq. (1) to get the150

following inequality:151

lim
�2=�3!1

Q(p⇤) + �2||U⇤ � gu(R,X;✓⇤
gu)||2 + �3||V⇤ � gi(R,Y;✓⇤

gi)||2 

Q(p̄) + �2||Ū� gu(R,X; ✓̄gu)||2 + �3||V̄ � gi(R,Y, ✓̄gi)||2 = Q(p̄). (4)

The right side of the above inequality is Q(p̄) since p̄ is the optimal solution of Eq. (3) and satisfies152

the constraints. By rearranging the last equation in (4), we obtain153

||U⇤ � gu(R,X;✓⇤
gu)||2 + ||V⇤ � gi(R,Y,✓⇤

gi)||2  lim
�2!1

Q(p̄)�Q(p⇤)

�2
= 0. (5)

To satisfy the inequality, i.e., making the sum of the norms 0, both norms have to be 0. This means154

that p⇤ is a feasible vector, i.e. U⇤ = gu(R,X;✓⇤
gu) and V⇤ = gi(R,Y,✓⇤

gi). By considering155

feasibility of p⇤ in Eq. (4) (i.e., replacing U⇤ by gu(R,X;✓⇤
gu) and V⇤ by gi(R,Y,✓⇤

gi) in Eq. (4)),156

we get Q(p⇤)  Q(p̄). Note that we assumed that p̄ is the optimal solution of Eq. (3), so for two157

feasible points p̄ and p⇤ we have Q(p⇤) � Q(p̄). So the conclusion is that Q(p⇤) = Q(p̄). In other158

words, for �2 = �3 ! 1, the objective functions of the Eq. (1) and Eq. (3) become equivalent.159

Optimal 
solution 
of MF

Feasible set 
constructed
by our NNs

Optimal solution 
of  our method

Optimal solution
of  previous works

Optimal solution
of  !(#) in Eq. (3), 
without constraints

Figure 1: Visualization of the optimal so-
lutions of different methods. The figure
shows the contours over the users and items
representations (U and V).

Fig. 1 shows a simple visualization of the objective160

functions and their optimal solutions. In this figure,161

the green contours correspond to the MF (by setting162

�2 = �3 = 0 in Eq. (1)) and the magenta contours163

correspond to Q(·), the main term of our objective164

function in Eq. (3). The feasible set, which satisfies our165

constraints in Eq. (3), has been shown by a blue rect-166

angle. This feasible set contains the low-dimensional167

representations that can be created by the user and item168

encoders. The optimal solution of our objective func-169

tion in Eq. (3) lies where the contour line of Q(·) with170

the smallest value intersects the feasible region.171

By setting �2 = �3 = 0 and increasing it to �2 =172

�3 ! 1, a path of solutions will be created, between173

the solution of the MF and our NRP autoencoder. The174

previous autoencoder methods use a fixed �2 > 0 and175

4

V, which helps in faster training and saving memory, and 3) the network can be trained end-to-end,134

as there is no need to optimize over U and V. We will see later that these advantages lead to better135

prediction performance.136

We now analyze the objective of Eq. (2), compare it with the one in Eq. (1), and explain why the137

neural representations act as a regularizer in previous works. We rewrite our objective in (2) as:138

min
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Q(✓,U,V) =L(fu(gu(R,X))) + L(f i(gi(R,Y))) + �1

X

j,k

(Rjk > 0)||Rjk �UT
j,:Vk,:||2

s.t. U = gu(R,X) and V = gi(R,Y). (3)

The objective functions in Equations (2) and (3) are equivalent, so we focus on comparing (3) with139

(1). We consider two special cases of the objective function in Eq. (1). First, consider the case where140
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Figure 1: Visualization of the optimal so-
lutions of different methods. The figure
shows the contours over the users and items
representations (U and V).

Fig. 1 shows a simple visualization of the objective160

functions and their optimal solutions. In this figure,161
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Our approach: neural representations with a direct structure

The direct structure is achieved by making two modifications to our autoencoder structure:
1) We remove the decoders from the structure, which leads to saving around 50% of memory and 

faster  optimization. 
2) We use a set of fully connected layers to predict the final rating, instead of the dot product. 

User input sources 
(ratings and side info)

User neural 
representation

Encoder

Item input sources 
(ratings and side info)

Item neural 
representation

Encoder

Predicted 
rating

FC layer

FC layer
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Experiments

We use four datasets in our experiments.

We use user/item contents, in addition to the ratings, as the sources of information.
We report RMSE and precision:

Table 1: Summary of the four datasets.

Dataset # of users # of items sparsity

ml100k 1 000 1 600 94%

ml1m 6 000 4 000 96%

Amazon R. 86 400 108 500 99.994%

Ichiba 324 000 294 000 99.84%

Evaluation metrics. We use the root mean square error (RMSE) and precision to evaluate the
prediction performance. Let us assume set T contains all the ratings in the test set, where Rjk 2 T
is the actual rating of the user j on item k. We define R̂jk as the predicted rating, generated by
a recommender system. Then, RMSE is defined as follows:

RMSE =
q

1

|T |
P

Rjk2T (Rjk � R̂jk)2. (7)

To report precision, we need to define the set of retrieved items and the set of relevant items
per user. We define set Sj as the set of items rated by the user j. To define the relevant items
(groundtruth) for user j, we sort the items in Sj based on their rating and pick the top p%. At
the test time, for user j, we predict the ratings of the items in Sj and consider the top p% of the
items (with the highest predicted ratings) as the retrieved set. We define the precision for user j
as:

precision =
|relevant items| \ |retrieved items|

|retrieved items| (8)

We report the average precision of all the users in test set.

Experimental setting. We implement our method using Keras with TensorFlow 1.12.0 back-
end. We ran all the experiments on a 12GB GPU. For each method, we tried a set of activation
functions (relu, selu, and tanh), a range of learning rates and regularization parameters from 10�1

to 10�5, a set of optimizers (Adam, SGD, and RMSprop), and picked the one that works best. For
a fair comparison, all autoencoder methods have the same structure (# of layers, neurons, etc.).
Supplementary material at the end of this script contains the details of the experimental setting.

Neural representations are better in prediction than regularization. In Table 2, we
compare our proposed method with matrix factorization (MF), the autoencoder-based methods,
DHA [15] and aSDAE [3], and the attention-based direct structure, ACCM [22], on MovieLens
datasets. Our framework applied to the same encoder-decoder structure as DHA and aSDAE are
called NRPDHA and NRPaSDAE, respectively. Our framework applied to the direct structure is
called NRPdirect.

MF has the worst performance (the largest RMSE), which means that MF formulation with
the L2 norm of weights as the regularization is not enough for the rating prediction. By setting
the hyper-parameters carefully, both DHA and aSDAE outperform SVD, which suggests that
the neural network’s representations are better regularizers than the L2 norm of the weights.
Our methods NRPDHA and NRPaSDAE outperform the original DHA and aSDAE, respectively, in
terms of RMSE and precision. This improvement comes from removing the MF terms, relying
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Neural representation: prediction vs regularization

We compare our proposed NRP framework, trained with the autoencoder and direct structures, 
versus MF and autoencoder-based methods on ml100k and ml1m datasets. 

Our framework combined with the direct structure achieves the best prediction results, fastest 
training, and minimum memory usage compared to the autoencoder-based methods. 
Neural representations are better for prediction than regularization.

Table 1: Our NRP framework achieves better prediction re-
sults, faster training, and less memory usage compared to
the autoencoder-basedmethods. The�rst/second number in
the fourth column is the number of parameters involved in
learning the neural network’s/MF’s representations. Time
refers to the training time per epoch.

. . . . . . . . . . . . . . .ml1m dataset . . . . . . . . . . . . . . .
method RMSE precision # params. time

MF 0.892 ± 0.004 68.2% ± 0.3 (0, 1M) 45s

DHA 0.865 ± 0.001 69.3% ± 0.2 (44M, 1M) 1 097s

NRPDHA 0.855 ± 0.002 69.6% ± 0.2 (44M, 0) 1 027s

aSDAE 0.879 ± 0.005 69.0% ± 0.1 (66M, 1M) 1 155s

NRPaSDAE 0.877 ± 0.008 68.5% ± 0.4 (66M, 0) 1 055s

ACCM 0.856 ± 0.002 69.5% ± 0.3 (11.5M, 0) 450s

ACCMMLP 0.865 ± 0.002 68.9% ± 0.2 (11.8M, 0) 470s

NRPdirect 0.851 ± 0.001 70.0% ± 0.1 (22M, 0) 640s

settings, including all the hyper-parameters in the experiments. The
source code is available at https://rit.rakuten.co.jp/oss/.

Neural representations are better in prediction than regularization.
In Table 1, we compare our proposed method with matrix factoriza-
tion (MF), the autoencoder-based methods, DHA [10] and aSDAE
[2], and the attention-based direct structure, ACCM [17], on the
ml1m dataset. We also replaced the dot product of ACCM with
MLP, denoted by ACCMMLP in Table 1. Our framework applied to
the same encoder-decoder structure as DHA and aSDAE are called
NRPDHA and NRPaSDAE, respectively. Our framework applied to
the direct structure is called NRPdirect.

MF has the worst performance (the largest RMSE), which means
that MF formulation with the L2 norm of weights as the regulariza-
tion is not enough for the rating prediction. By setting the hyper-
parameters carefully, both DHA and aSDAE outperform MF, which
suggests that the neural network’s representations are better regu-
larizers than the L2 norm of the weights. Our methods NRPDHA and
NRPaSDAE outperform the original DHA and aSDAE, respectively,
in terms of RMSE and precision. This improvement comes from
removing the MF terms, relying on neural representations, and stay-
ing inside the feasible set of neural network’s output. ACCM, the
direct structure of Shi et al. [17], outperformsMF, DHA, and aSDAE,
but shows similar performance to the NRPDHA. Finally, NRPdirect
has the best performance and outperforms all autoencoder-based
methods. This shows that removing the decoders, making the neu-
ral network free of reconstructing the inputs, and replacing the dot
product with MLPs lead to learning a better model.

Note that NRPdirect outperforms ACCM because of 1) using inter-
action vectors as the input instead of IDs and 2) using MLPs, instead
of the dot product, to map the joint representation to the rating.
To show the importance of using interaction vector as the input,
we have replaced the dot product of ACCM with MLPs, denoted
by ACCMMLP in Table 1. ACCMMLP performs slightly worse than
ACCM in ml1m. NRPdirect outperforms ACCMMLP.

The last two columns of Table 1 compare the number of learn-
able parameters and training time per epoch of each method. DHA

Table 2: RMSE of ourNRP framework comparedwith the hy-
brid and collaborative �ltering methods. Our approach out-
performs the rest of the methods.

method ml100k ml1m Ichiba

MF [8] 0.940 ± 0.003 0.892 ± 0.0004 1.00 ± 0.104

Autorec [16] 0.921 ± 0.002 0.889 ± 0.0003 2.47 ± 0.059

NeuMF [5] 0.948 ± 0.005 0.886 ± 0.001 0.900 ± 0.004

DSSM [6] 0.934 ± 0.002 0.941 ± 0.0004 0.913 ± 0.003

DHA [10] 0.939 ± 0.002 0.865 ± 0.001 OM

NRPDHA 0.926 ± 0.004 0.855 ± 0.002 OM

aSDAE [2] 0.946 ± 0.005 0.879 ± 0.005 OM

NRPaSDAE 0.910 ± 0.008 0.877 ± 0.008 OM

HIRE [11] 0.930 ± 0.006 0.861 ± 0.004 OM

NRPdirect 0.897 ± 0.003 0.851 ± 0.001 0.889 ± 0.002

and aSDAE have the largest memory usage and training time, as
they optimize the two representations alternatively. NRPDHA and
NRPaSDAE achieve better training time and memory than DHA and
aSDAE, respectively. Among the neural network-based methods,
the direct structures, ACCM and NRPdirect, have the fastest training
and lowest memory usage because of their simple structure. Note
that NRPdirect has a larger number of parameters than ACCM. This
is because NRPdirect uses MLPs to learn low-dimensional represen-
tations, while ACCM uses embedding layers.

Comparison with other hybrid and collaborative �ltering methods.
We compare RMSE of our method with several baselines and recent
works in Table 2. We slightly modi�ed NeuMF [5] and DSSM [6]
to make them work with explicit feedback. We can see that our
method achieves the best results on di�erent datasets.

We got an out-of-memory (OOM) error in the training of HIRE,
DHA, and aSDAE in Ichiba dataset. HIRE’s code (publicly available
by the authors) needs the entire interaction matrix in training,
which can not be stored in memory for the Ichiba datasets. DHA
and aSDAE reconstruct the users’ and items’ interaction vectors.
This makes the �rst and the last layer of their autoencoders huge
in the Ichiba dataset and makes their model’s size larger than the
12GB memory of our GPU.

5 CONCLUSION
The current autoencoder-based hybrid recommender systems learn
matrix factorization-based representations for the prediction task
and neural networks-based representation for the regularization. In
this paper, we proposed a new framework that uses the neural net-
works’ representation directly for the prediction task. We showed
that by applying our approach to the same autoencoder structure
as previous works, we can achieve faster training and better per-
formance. We also proposed a new framework by removing the
decoders and replacing dot product with MLP in autoencoders. Our
approach combined with the proposed framework outperformed
the previous works. It also had a fast training and small memory
usage compared to the autoencoder-based methods.

Table 1: Our NRP framework achieves better prediction re-
sults, faster training, and less memory usage compared to
the autoencoder-basedmethods. The�rst/second number in
the fourth column is the number of parameters involved in
learning the neural network’s/MF’s representations. Time
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The current autoencoder-based hybrid recommender systems learn
matrix factorization-based representations for the prediction task
and neural networks-based representation for the regularization. In
this paper, we proposed a new framework that uses the neural net-
works’ representation directly for the prediction task. We showed
that by applying our approach to the same autoencoder structure
as previous works, we can achieve faster training and better per-
formance. We also proposed a new framework by removing the
decoders and replacing dot product with MLP in autoencoders. Our
approach combined with the proposed framework outperformed
the previous works. It also had a fast training and small memory
usage compared to the autoencoder-based methods.
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Comparison with the hybrid and collaborative filtering methods

We compare RMSE and precision of our method with several SOTA methods.

Our method achieves the best results on different datasets 

method ml100k ml1m Amazon Ichiba

MF [Koren et al. 2009] 0.940 0.892 1.153 1.00

Autorec [Sedhain et al. 2015] 0.921 0.889 2.19 2.47

NeuMF [He et al. 2017] 0.948 0.886 1.140 0.900

DSSM [Huang et al. 2013 0.934 0.941 NA 0.913

DHA [Li et al. 2018] 0.939 0.865 OM OM

NRPDHA 0.926 0.855 1.135 OM

aSDAE [Dong et al. 2017] 0.946 0.879 OM OM

NRPaSDAE 0.910 0.877 1.24 OM

HIRE [Liu et al. 2019] 0.930 0.861 OM OM

NRPdirect 0.897 0.851 1.135 0.889

Table 1: RMSE of our NRP framework compared with the hybrid and collaborative filtering
methods. Our approach outperforms the rest of the methods.

method ml100k ml1m

MF [Koren et al. 2009] 0.940 0.892

Autorec [Sedhain et al. 2015] 0.921 0.889

NeuMF [He et al. 2017] 0.948 0.886

DSSM [Huang et al. 2013] 0.934 0.941

DHA [Li et al. 2018] 0.939 0.865

aSDAE [Dong et al. 2017] 0.946 0.879

HIRE [Liu et al. 2019] 0.930 0.861

NRP [Raziperchikolaei et al. 2020] 0.897 0.851

Ours 0.888 0.843

(
W u

jk = W u
jl if Rjk = Rjl, j = 1, . . . ,m

W i
jk = W i

lk if Rjk = Rlk, k = 1, . . . , n
(17)

W u
jk = Rjk and W i

jk = Rjk

• Fix WU and Wi and optimize ✓, U and V

• Fix ✓, U and V and optimize WU and Wi

3

Table 2: We report the precision by creating the
relevant and retrieved sets using top 10% and 25%
of the items. We put "OM" in the tables whenever
we get an out-of-memory error.

ml1m Amazon review
method top 10% top 25% top 10% top 25%

MF 55.6% 68.05% 64.9% 71.5%

Autorec 57.6% 69.5% 62.6% 69.8%

NeuMF 56.8% 68.9% 66.8% 72.6%

DSSM 54.7% 67.2% NA NA

DHA 57.4% 69.3% OM OM

NRPDHA 57.3% 69.5% 66.6% 72.9%

aSDAE 56.4% 68.0% OM OM

NRPaSDAE 57.1% 69.0% 64.5% 71.2%

HIRE 57.4% 69.4% OM OM

NRPdirect 58.1% 69.9% 67.3% 73.1%

Table 3: RMSE of our NRP framework com-
pared with the hybrid and collaborative filter-
ing methods. Our approach outperforms the
rest of the methods.

method ml100k ml1m Amazon Ichiba

MF 0.940 0.892 1.153 1.00

Autorec 0.921 0.889 2.19 2.47

NeuMF 0.948 0.886 1.140 0.900

DSSM 0.934 0.941 NA 0.913

DHA 0.939 0.865 OM OM

NRPDHA 0.926 0.855 1.135 OM

aSDAE 0.946 0.879 OM OM

NRPaSDAE 0.910 0.877 1.24 OM

HIRE 0.930 0.861 OM OM

NRPdirect 0.897 0.851 1.135 0.889

optimize the two representations alternatively. NRPDHA and NRPaSDAE achieve better training time306

and memory than DHA and aSDAE, respectively. Among the neural network-based methods, our307

NRPdirect has the fastest training and lowest memory usage because of its simple structure.308

Comparison with other hybrid and collaborative filtering methods. We compare our method309

with several baselines and recent works in Tables 2 and 3. MF [13] is a baseline collaborative filtering310

method that uses dot product of the user and item representations to predict the rating. Autorec [21]311

is another collaborative filtering method which uses autoencoders to reconstruct the ratings. NeuMF312

[10] combines deep and shallow networks, with the user/item ID as the input, to predict the ratings.313

NeuMF was originally proposed for the prediction of implicit feedback, but it can easily be modified314

to work with explicit feedback. DSSM [11] is a content-based recommender method, which uses deep315

neural networks to learn the representations. We modify DSSM to make it applicable to the explicit316

feedback prediction by connecting the user/item representations to a MLP with a mean squared error317

loss. DSSM is not applicable in the Amazon dataset, as there is no user side information. HIRE [16]318

is a hybrid method that considers the hierarchical user and item side information. DHA [15] and319

aSDAE [3] are autoencoder-based methods, which use neural representations as the regularizer.320

Table 4: NRPdirect, which is trained with
and without user and item side information,
on ml100k and Ichiba datasets.

ml100k Ichiba
Prec. RMSE Prec. RMSE

no side info 0.901 69.9% 0.895 78.9%

side info 0.897 70.2% 0.889 80.1%

In Table 2 we report precision and in Table 3 we report321

RMSE of methods on four datasets. We can see that our322

method achieves the best results on different datasets.323

Importance of side information. We train our324

model with and without the user/item side informa-325

tion to verify that the side information can improve the326

prediction results. Table 4 lists the RMSE and precision327

results on different datasets. We can see that the side328

information helps to achieve better results.329

5 Conclusion330

The current autoencoder-based hybrid recommender systems learn two types of representations. One331

comes from the matrix factorization and used for prediction. The other one comes from neural332

networks and used for regularization. In this paper, we proposed a new framework that uses the333

neural networks’ representation directly for the prediction task. We have shown that by applying our334

approach to the same autoencoder structure as previous works, we achieve faster training and better335

performance. We also proposed a simpler network structure by removing the decoders and replacing336

dot product with MLP in autoencoders. Our approach combined with the new proposed structure337

outperforms the previous works. It also has a fast training and small memory usage compared to the338

autoencoder-based methods.339
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Conclusion

The current autoencoder-based hybrid recommender systems learn two types of representations:
• One comes from the matrix factorization and used for prediction. 
• The other one comes from neural networks and used for regularization. 

We proposed a framework that uses the neural networks’ representation directly for the prediction task. 

We have shown that by applying our approach to the same autoencoder structure as previous works, we 
achieve faster training and better performance. 

We also proposed a simpler network structure by removing the decoders and replacing dot product with 
MLP in autoencoders. 

Our approach combined with the new proposed structure outperforms the previous works. 
It also has a fast training and small memory usage compared to the autoencoder-based methods. 




