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Abstract
In one-class recommendation systems, the goal is to learn a model
from a small set of interacted users and items and then identify
the positively-related (i.e., similar) user-item pairs among a large
number of pairs with unknown interactions. Most loss functions
in the literature rely on dissimilar pairs of users and items, which
are selected from the ones with unknown interactions, to obtain
better prediction performance. The main issue with this strategy is
that it needs a large number of dissimilar pairs, which increases the
training time significantly. In this paper, our goal is to only use the
similar set to train the models and discard the dissimilar set. We
highlight three trivial solutions that the recommendation system
models converge to when they are trained only on similar pairs:
collapsed and dimensional collapsed solutions. We propose a hinge
pairwise loss and an orthogonality term that can be added to the
objective functions in the literature to avoid these trivial solutions.
We conduct experiments on various tasks on public and real-world
datasets, which show that our approach using only similar pairs
can be trained several times faster than the state-of-the-art methods
while achieving competitive results.
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1 Introduction
In implicit feedback prediction [10, 14, 20], we only knowwhether a
user has interacted (e.g,. purchased or clicked) with an item, without
knowing their satisfaction level. This problem setting is also called a
one-class recommendation system (RS) problem since we only have
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access to the "positive interactions." The absence of an interaction
between a user and an item in the training set does not indicate a
negative interaction, but rather a lack of preference information,
caused by the huge number of items in the system that users cannot
fully see.

Different types of loss functions have been used in the literature
to learn an RS model, such as mean squared error (MSE) loss [4,
10, 11, 14, 17, 18, 21, 26], binary cross-entropy (BCE) [5, 9, 24],
Bayesian personalized rank (BPR) loss [7, 8, 19], and contrastive loss
[13, 18, 23]. These loss functions need both similar and dissimilar
pairs of users and items to learn a model. If we train these loss
functions only using similar pairs, we get a collapsed solution: all
representations will be mapped to the same point in the latent
space, and the model predicts the same interaction score for all
the pairs. The performance of the collapsed solution is as bad as
assigning random representations to the users and items. Therefore,
the dissimilar sets are essential in RS models to avoid the collapsed
solution.

In one-class recommendation systems, we only have access to
the implicit (known) interactions, and the rest of the interactions
are unknown. To create a dissimilar set, the common approach
is random negative sampling, where a random set of user and
item pairs with unknown interactions are considered dissimilar
[4, 5, 9, 18, 24, 26]. Another approach is non-sampling, where all
pairs with unknown interactions are considered dissimilar [1, 10].
The final approach is hard-negative sampling, where the pairs with
the unknown interactions that the model has difficulty classifying
are considered dissimilar [2, 3, 27].

The main issue with the random negative sampling strategy is
that to achieve reasonable results we need a large set of dissimilar
pairs. This will increase the training time significantly. Also, as
mentioned in [12], another disadvantage of this approach is that it
increases the chance of converting a "similar pair with an unknown
interaction" to a dissimilar pair, which hurts the performance.

The non-sampling approach makes a unrealistic assumption that
all missing interactions are negative. This makes the labels in the
training dataset noisy and hurts the performance.

The hard negative sampling approach has two main issues. The
first one is that "similar pairs with unknown interactions" are by
definition difficult to classify as dissimilar, and will be mistakenly
taken as hard negatives, which hurts the performance. The second
issue is that selecting hard negatives usually needsmodel evaluation
on a large number of pairs, which increases the training time.

In this paper, we propose a new objective function that only
needs a similar set of users and items to achieve comparable results
to the state-of-the-art methods. To avoid the collapsed solution, we
propose a hinge pairwise distance loss and to avoid the dimensional
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collapsed solution, we propose to minimize the correlation between
the dimensions of representations by making them orthogonal.

We conduct extensive experiments on several real-world and
public datasets in different settings. The experimental results in
Section 4 show that our approach achieves competitive results while
being trained faster than the state-of-the-art methods.

Notations. We denote the interaction matrix by R ∈ Rm×n ,
where m and n are the number of users and items, respectively,
Rjk > 0 is the interaction value of the user j on the item k , and
Rjk = 0 means the interaction is unknown. The goal is to predict
the unknown interactions in R. The ith row of a matrix H is shown
by Hi, : and the jth column is shown by H:, j . The d-dimensional
representations of all users and all items are denoted by Zu ∈ Rm×d

and Zi ∈ Rn×d , respectively. The representation of the jth user and
kth item are denoted by zuj = Zuj, : and zik = Zik, :, respectively.

2 Related works
Since our main contribution is proposing a new objective function,
we review the different loss functions used in the RS literature.
To define the loss functions in RSs, previous works use sets of
similar and dissimilar pairs of users and items. The similar set S+
contains all the users and items that interacted with each other, i.e.,
(j,k) ∈ S+ if Rjk = 1. The dissimilar set S− contains a subset of the
users and items with unknown interactions, i.e., Rjk = 0.

Two popular loss functions in the literature are mean squared
error (MSE) [4, 10, 11, 14, 17, 18, 21, 26] and binary cross-entropy
(BCE) [5, 9, 15, 24], which directly minimize the difference between
the predicted and actual interactions:

lBCE(zuj , z
i
k ) = −(Rjk log R̂jk + (1 − Rjk ) log(1 − R̂jk )),

lMSE(zuj , z
i
k ) = (R̂jk − Rjk )

2, (1)

where j,k ∈ S+ ∪ S− and R̂jk is the predicted interaction by the
RS model. On the other hand, the BPR loss [7, 8, 19] is defined
based on the difference between the predicted interactions of the
similar and dissimilar pairs. The Contrastive loss [6] is also used
in recommendation systems [13, 18, 23], where the idea is to map
representations of similar pairs of users and items close to each
other and the dissimilar ones far away.

Note that the above loss functions are optimized over the user
and item representations, zuj and zik , which are used to generate the
predicted interaction. Themost commonmappings from representa-
tions to predicted interactions are dot product [4, 7, 10, 11, 14, 18, 21,
26], cosine similarity [24, 25], and neural networks [5, 8, 9, 16, 17].

3 Proposed method
In this section, we first explain how the previous objective functions
converge to a collapsed solution when they only use similar pairs.
Then, we explain our proposed method and we show how we avoid
the collapsed and dimensional collapsed solutions by proposing
new terms.

3.1 Collapsed solution without dissimilar set
The loss functions introduced in Section 2 use both similar and
dissimilar pairs to predict the actual representations. Let us explain
what happens if we only use the similar pairs and discard the

dissimilar ones using the contrastive loss defined in [6]:

Econt(Zu ,Zi ) =
∑

j,k ∈S+
| |zuj − zik | |

2. (2)

Optimizing this objective function will lead to a collapsed solution,
where all the user and item representations are mapped to any
d-dimensional vector in the latent space. At the collapsed solution,
which is the result of removing dissimilar pairs from the loss func-
tions, the model always returns the same prediction, no matter
what the input pairs are. This works as poorly as a random model.

As another example, consider the following MSE loss function
with only similar pairs S+ and no dissimilar pairs:

EMSE(Zu ,Zi ) =
∑

j,k ∈S+
((zuj )

T zik − 1)2, (3)

The optimal solution of the EMSE is achieved by mapping all the
user and item representations to any d-dimensional vector with a
unit L2 norm. That’s because the dot product of all pairs becomes
1, i.e., R̂jk = (zuj )

T zik = 1, which makes the loss value 0 for all the
terms.

Different combinations of mapping functions and loss functions
can give us different objective functions. In all cases, without dis-
similar pairs, the result is a collapsed solution.

3.2 Avoiding the collapsed solution:
hinge pairwise distance loss

Let us assume the d-dimensional representations of the users and
items are denoted by Zu ∈ Rm×d and Zi ∈ Rn×d , respectively. The
joint user-item representation is achieved by vertically concatenat-
ing the user and item representations, Z = [Zu ,Zi ] ∈ R(m+n)×d .
The pairwise distance between all the representations in Z is com-
puted as:

dp = Econt(Z,Z) =
1

(m + n)2

m+n∑
l=1

m+n∑
s=1

| |zl − zs | |2. (4)

dp computes the distance between all the user-user, item-item, and
user-item representations, which is different from Econt(Zu ,Zi )
that computes the distance between similar pairs of the users and
items.

Mathematically, at the collapsed solution, we have dp = 0. To
avoid the collapsed solution, we propose a hinge pairwise distance
loss that keeps the average pairwise distance dp greater than a
marginmp . The new objective function can be written as:

E = Econt(Zu ,Zi ) + Edp (Z) =∑
j,k ∈S+

(
| |zuj − zik | |

2) +max (0,mp − dp )
2. (5)

Note that dp involves computing the distances between all the
pairs, which could be very time-consuming. Next, we show that
dp is equivalent to twice the summation of the variance of each
dimension, which can be computed significantly faster. Let us de-
note the qth dimension of the lth representation as zl,q , and the
pairwise distance of the qth dimension as dqp . Then, dp in Eq. (4)
can be separated over the d dimensions as dp =

∑d
q=1 d

q
p .
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Below, we show that dqp is equivalent to twice the variance of
the qth dimension:

d
q
p =

1
(m + n)2

m+n∑
l=1

m+n∑
s=1

(zlq − zsq )
2 =

2
(m + n)2

m+n∑
l=1,s=1

zlq
2 −

2
(m + n)2

m+n∑
l=1

zlq

m+n∑
s=1

zsq =

2
(m + n)

m+n∑
l=1

zlq
2 − 2Z̄2

:,q = 2var(Z:,q ). (6)

This means that at the collapsed solution, the variance of each
dimension is 0, and to avoid this solution, we need the summation
of the variance of the dimensions to be greater than a margin.

3.3 Avoiding dimensional collapsed solution:
orthogonality term

While the objective function of Eq. (5) avoids the collapsed solution,
it gives us low-quality representations by converging to a dimen-
sional collapsed solution. In this solution, each user or item has the
same value across its dimensions, but it’s distinct from other users
and items. To understand this solution, consider a simpler version
of our objective function, where we use Edp = −dp :

E = Econt(Zu ,Zi ) + Edp (Z) = Econt(Zu ,Zi ) − dp

=

d∑
q=1

( ∑
j,k ∈S+

| |zujq − zikq | |
2 − 2var(Z:,q )

)
=

d∑
q=1

Eq . (7)

Since the objective function E separates over each dimension, opti-
mizing E is equivalent to optimizing the 1-dimensional objective
function Eq separately for q = 1, . . . ,d . Since the 1-dimensional ob-
jective Eq is the same for any pair of dimensions, we get d identical
solutions.

Although the mathematical proof does not extend to the case
when the hinge pairwise loss is used as in Eq. (5), our empirical
results still confirm that Eq. (5) converges to a dimensional collapsed
solution as shown in the third plot of Fig. 2.

To avoid the dimensional collapsed solution, we add an orthogo-
nality term to the objective function to minimize the correlation
between the dimensions:

Eours = λ1Econt(Zu ,Zi ) + λ2Edp (Z) + λ3Eorth(Z), (8)

where Econt(Zu ,Zi ) and Edp (Z) are defined in Eq. (5), Eorth(Z) =∑d
q=1

∑d
s=q+1 Ẑ

T
:,q Ẑ:,s , Ẑ is achieved by subtracting the mean of

each dimension from Z, and Ẑ:,q is the qth column of Ẑ. The or-
thogonality term lets the objective avoid the dimensional collapsed
solution by making the off-diagonal values of the covariance ma-
trix small, which makes the correlation of the dimensions of the
representations small.

3.4 Why do we need both terms?
As explained above, if we only optimize the hinge pairwise distance
loss Edp (Z) and Econt(Zu ,Zi ) together without using the orthog-
onality term Eorth(Z), it will converge to a dimensional collapsed
solution.

Table 1: Details of Datasets.

Dataset User Item Interaction Sparsity

AMusic 1 700 13 000 46 000 99.8%

Lastfm 1 741 2 665 69 149 98.5%

Ichiba10m1.4M 844 000 10M 99.9991%

Let us now ignore the term Edp (Z) and consider Eorth(Z) +
Econt(Zu ,Zi ) as the objective function. We show here that a con-
stant matrix Z, where all its elements are equal to a scalar α ∈ R, is
an optimal solution for this objective function. The constant matrix
Zmakes Econt(Zu ,Zi ) = 0 since the pairwise distance between any
two points is 0. It also makes Eorth(Z) = 0, since the covariance be-
tween any pair of dimensions is 0. As a result, any constant matrix
is the optimal solution to this objective function, which gives us
a collapsed solution. For this reason, it’s important to keep all the
terms to avoid the collapsed and dimensional collapsed solutions.

3.5 Computational complexity and
batch-wise training

Here, we analyze the computational complexity of each term in
our objective function in Eq. (8). The time complexity of Econt and
Eorth are O(|S+ |d) and O((m + n)d2), respectively. For Edp , if we
use Eq. (4), the complexity is O((m + n)2d). If we use Eq. (6) to
compute the variance, then the time complexity of computing Edp
will decrease to O((m + n)d), which is linear in the total number of
users and items.

Since we use batches to train the model and update the repre-
sentations, the three terms are computed on a batch and will have
a much smaller time complexity, which depends on the number
of users and items in the batch. We create batches based on the
number of interactions: a batch of size B contains B interactions.
We compute the representations of the users and items that exist
in the batch and then compute the loss function.

4 Experiments
Our proposed objective function uses Similar pairs,PairwiseDistance
loss, and Orthogonality loss, and is denoted by SimPDO.

4.1 Experimental setup
Datasets and evaluationmetrics.We conducted experiments on
two public benchmark datasets and one real-world dataset. Details
of the datasets are in Table 1. For public benchmark datasets, we
used Amazon Music (AMusic) and Lastfm1 datasets. These datasets
are available online2. The goal is to predict unknown interactions
between existing users and items.We follow [5, 9] and report NDCG
and Hit Ratio (HR) to evaluate the implicit feedback task. For the
real-world dataset, we used Ichiba10m3, where the goal is to re-
trieve potential buyers for the new items based on the items’ side
information. The train/test split is done based on the time period,

1http://ocelma.net/MusicRecommendationDataset
2https://github.com/familyld/DeepCF
3https://www.rakuten.co.jp

https://github.com/familyld/DeepCF
https://www.rakuten.co.jp
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Table 2: Comparison with the state-of-the-art methods. Our method achieves competitive results using smaller number of
training pairs. We report the mean of three runs here.

. . . . . . . . . . . . . .AMusic . . . . . . . . . . . . . . . . . . . . . . . . . . . Lastfm . . . . . . . . . . . . . Negative
method HR@5 HR@10 NDCG@5 NDCG@10 HR@5 HR@10 NDCG@5 NDCG@10 sampling

SimPDO 0.326 0.434 0.219 0.256 0.754 0.896 0.518 0.571 Positive only

SRNS 0.298 0.377 0.213 0.238 0.776 0.877 0.583 0.615 Hard negative

BUIR-ID 0.257 0.365 0.171 0.195 0.701 0.841 0.510 0.565 Positive only

DirectAU 0.281 0.373 0.194 0.236 0.741 0.863 0.584 0.550 Positive only

CFNet 0.297 0.384 0.210 0.242 0.771 0.886 0.556 0.583 Random

DMF 0.285 0.381 0.197 0.224 0.734 0.859 0.532 0.572 Random

WMF 0.278 0.343 0.199 0.220 0.748 0.881 0.528 0.566 None-sampling

Table 3: Performance of different RSmodels improves when
Integrated with SimPDO.

AMusic Lastfm
method HR@5 HR@10 HR@5 HR@10

DMF 0.285 0.381 0.734 0.859
SimPDO + DMF 0.326 0.434 0.754 0.896

MF 0.284 0.357 0.742 0.881
SimPDO + MF 0.314 0.393 0.748 0.890

where the test items are the items that didn’t appear during the
training period. We follow [18] and report recall@50 to evaluate
the performance of the methods, which shows what portion of the
retrieved items/articles is relevant to the users.

We compare our method with a set of baseline and state-of-the-
art methods. BUIR-ID [12] only uses positive pairs and uses the
momentum mechanism to update the parameters and to avoid the
collapse solution. DirectAU [22] only uses similar pairs of users
and items and avoids the collapsed solution by using the unifor-
mity term. SRNS [3] uses hard negative sampling, CFNet [5] and
DMF [24] use random negative sampling, and WMF [10] uses all
unknown samples as negative samples.

Implementation details.We implemented our method using
Keras with TensorFlow 2 backend. We used one Nvidia Tesla V100-
SXM2 32GB GPU in the internal cluster. We used grid search to set
the hyperparameters using a subset of the training set and a small
validation set. Here is the range of the hyperparameter we searched
for: learning rate in {0.1, 0.01, 0.5}, batch size in {32, 64, 128}, λs in
{0.01, 0.1, 1},mp in {0.01, 0.1}, embedding size in {100, 500, 1000}.
We set the maximum number of epochs to 50. We set the batch
size to 128 in all datasets. We set λ1 = 0.01, λ2 = 1, and λ3 = 1 in
all datasets. The marginmp is 0.01 in all datasets. The dimension
of the user and item embeddings is 1 000 in AMusic and Lastfm
datasets and 100 in Ichiba10m dataset. For WMF, we found that
the weight of negative samples plays an important role and we
tuned it carefully. In Lastfm and AMusic, we set it to 0.1 and 0.5,
respectively.

AMusic (20 epochs) lastfm (20 epochs)

0 1 2 3 4 5 6 7
training time 1e2
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20
25
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40
45

HR
@

10

 

SimPDO
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training time 1e2
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20
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80
90
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DirectAU
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CFNet
WMF

Figure 1: We report the performance of the methods as a
function of training time. SimPDO achieves a higher perfor-
mance with a faster convergence.

4.2 Experimental results on public datasets
SimPDO achieves competitive performance compared to the
state-of-the-art methods. In Table 2, we compare the methods
on AMusic and Lastfm datasets. We use the publicly available code
for all baseline methods. We integrated SimPDO into DMF, referred
to as SimPDO, and compared its performance to other baselines in
Table 2. The results show that SimPDO outperforms most state-of-
the-art methods and achieves competitive results. It even outper-
formed SRNS, which utilizes a complicated hard negative sampling
strategy.

SimPDO improves the performance of different RS mod-
els. To verify whether SimPDO can improve different RS models
that utilize random negative sampling, we combined SimPDO with
Matrix Factorization (MF) and Deep Matrix Factorization (DMF);
we replaced their MSE and BCE objective functions with SimPDO.
As the results show in Table 3, SimPDO boosted the performance
of DMF and MF. For example, combining SimPDO with DMF and
MF yields a 14% and 10% improvement in the AMusic dataset for
HR@5, respectively.

SimPDO achieves higher performance with a faster con-
vergence. In Fig. 1 we train each of the methods for 20 epochs
and show how their performance on the test set changes during
the training. SimPDO achieves higher performance faster than the
other methods.
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Figure 2: Impact of each term of our objective function in Ichiba10m datasets. Using all three terms leads to the best results.
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Figure 3: SimPDO vs Shared as we change the number of
training pairs from 1Mto 10Min Ichiba10mdataset. SimPDO
achieves significantly better results when we use a smaller
number of training pairs.

SimPDO, BUIR, and DirectAU only use positive pairs, while the
rest of the methods use both positive and negative pairs. As a result,
these three methods use a significantly smaller number of training
pairs compared to the other methods, such as CFNet [5] and can be
trained faster than most of the previous works.

4.3 Experimental results on the large-scale
real-world dataset

The strength of SimPDO becomes particularly clear when applied to
large-scale datasets. The Ichiba10m dataset is 200 times larger than
the benchmark dataset discussed in the previous section. For this
dataset, training one epoch takes one hour, and it takes more than
10 epochs to converge. For this dataset, we combined SimPDO with
the Shared [18] model, as it is the state-of-the-art model for this
dataset and task. Shared model utilizes random negative sampling
to optimize its contrastive loss. In this section, we refer to SimPDO
+ Shared as SimPDO for simplicity, and compare its performance
with the original Shared model.

SimPDOachieves better resultswith fewer training points.
In the Ichiba10m dataset, we select 2 000 test items and report re-
call@50 as we change the number of training pairs from 1M to 10M.
To train the Shared model, we divide the training pairs between
similar and dissimilar pairs in different proportions. In Fig. 3, we
show two scenarios, where the number of dissimilar pairs is 1) the
same as and 2) three times greater than the number of similar pairs.

There are three remarkable points about the results of Fig. 3. First,
SimPDO performs better than the original Shared model, no matter
how many training pairs are used, which shows the advantage of

training only on similar pairs. Second, the performance gap between
SimPDO and Shared model becomes smaller as we increase the
portion of the dissimilar pairs compared to the similar ones, which
shows the importance of using a large number of dissimilar pairs.
Third, SimPDO is significantly better than Shared using a smaller
number of training pairs. This is a big advantage of SimPDO when
the datasets have billions of pairs and it’s time-consuming to train
on all of them: SimPDO can be trained on a smaller training set and
still achieve reasonable results.

Impact of each term of SimPDO. In Fig. 2, we investigate the
impact of each term of our objective function. We report three
metrics: 1) the recall as we train the models, 2) the average variance
of the dimensions of all the representations, and 3) the average
correlation between the dimensions of the representations.

We show the results on Ichiba10m In Fig. 2. We can see that
the method with all three terms achieves the maximum recall. 1)
without Econt, as we can see in the first column, the performance
drops significantly since the similarity between the similar pairs
will not be preserved, 2) without Edp , as we can see in the second
column, the variance drops significantly towards 0, which is a sign
of the collapsed solution, and 3) without Eorth, as we can see in the
third column, the average correlation increases, which is a sign of
the dimensional collapsed solution.

5 Conclusion
In this paper, we proposed SimPDO, a new objective function that
enables the training of one-class recommendation system models
without dissimilar pairs. We showed that by only using similar
pairs, the optimal solution of existing objective functions becomes
a collapsed solution, where every representation is mapped to the
same point in the latent space. We avoided the collapsed solution
by providing a hinge loss for pairwise distances. We proved that
this loss is equivalent to the summation of the variance of each
dimension of representations. We also showed that we need an
orthogonality term to avoid dimensional collapsed solutions, which
can be computed much faster than the original hinge loss. Finally,
we showed that both terms are necessary to learn meaningful rep-
resentations. The results demonstrated that SimPDO outperformed
the existing RS objective functions without using dissimilar pairs.
Also, SimPDO can be trained more efficiently with a smaller num-
ber of training pairs. Our ablation study showed it is important to
keep all terms in our objective function to achieve the best results.
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