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1 Abstract
Binary hashing is an established approach for fast, approximate image search. The

idea is to learn a hash function that maps a query image to a binary vector so that

Hamming distances approximate image similarities. An important subproblem in

binary hashing is to solve a set of independent classification problems, usually

using support vector machines (SVMs). In this paper, we show that the hash func-

tion performs faster if we learn a set of circulant SVMs instead of the independent

ones. Unlike the previously proposed algorithm that finds a suboptimal solution of

the circulant SVMs, we show that the problem can be solved exactly and efficiently

by casting it as a convex maximum margin classification problem on a modified

dataset. We confirm experimentally that our approach solves the classification

problem and the image search task better than the previous method.
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2 Binary hash functions for fast image retrieval
In K nearest neighbors problem, there are N training points in D-dimensional space

(usually D > 100) xi ∈ R
D, i = 1, . . . ,N. The goal is to find the K nearest neighbors

of a query xq ∈ R
D. Exact search in the original space is O(ND) in time and space.

A binary hash function h takes as input

a high-dimensional vector x ∈ R
D and

maps it to an L-bit vector z = h(x) ∈

{0, 1}L or z = h(x) ∈ {−1, 1}L.

The main goal is preserving the neigh-

borhood, i.e., assign (dis)similar codes to

(dis)similar patterns.
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In the binary space, time complexity is computed based on two operations:

• Time needed to generate the binary code for the query: mapping a

D-dimensional vector to an L-bit vector takes O(LD).

• O(1) to search for similar codes using inverted index.

3 Learning the binary hash function
Most hashing papers try to minimize an affinity-based objective, which directly tries

to preserve the original similarities in the binary space. With the Laplacian loss, the

objective function has the following form:

min
h

E(h) =
N
∑

i ,j=1

wij

∥

∥h(xi)− h(xj)
∥

∥

2
s.t.

N
∑

i=1

hl(xi) = 0, h(X)h(X)T = NI

where xi ∈ R
D is the i th input data, h is the parameters of the hash function, ynm

is the ground-truth value of the pair of points xn and xm (ynm = 1 for similar pairs

and −1 for dissimilar pairs). In this paper, we consider the linear hash function

h(xi) = sgn (Wxi) ∈ {−1,+1}L that maps each image into an L-bit binary code.

Optimizing E(h) is difficult because h is discrete.

One popular way to solve the problem is to introduce the coordinates Z ∈ {−1, 1}L×N

(one L bit code per point), define the objective over Z, and learn the codes and the

hash function in separate steps:

• Over Z: Learn the codes by alternating optimization over each bit.

• Over h: Learn a binary classifier for each bit independently.

Learning the hash function h corresponds to solving L binary classification prob-

lems independently. We fit classifier l to the data (X,Z.,i) for l = 1, . . . , L (XD×N =

(x1, . . . , xN) = images,Z.,i = (z.1, . . . , z.N) ∈ {−1, 1}N = binary codes).

4 Hashing with a circulant weight matrix
A D-dim. vector w = (w0, . . . ,wD−1) is the basis for the D × D circulant matrix W:

W = circ (w) ≡

[ w0 wD−1 ··· w2 w1

w1 w0 wD−1 ··· w2

... ... . . . . . . ...

wD−1 wD−2 ··· w1 w0

]

For L < D bits, we only need the first L rows of circ (w): circ (w)L.

For a query xi, generating the binary code sgn (Wxi) involves a matrix-vector mul-

tiplication. This can be computed faster when W is circulant:

Space Complexity Time Complexity

Linear function O(LD) O(LD)

Circulant function O(D) min(O(LD),O(D log D))

The reason is that the Discrete Fourier Transform F(·) can be computed in O(D log D).

The binary code is generated using DFT: h(x) = sgn (Wx) = sgn
(

F−1(F(x) ◦ F(w))
)

.

5 Learning circulant support vector machines
Consider the dataset X ∈ R

D×N and the labels Z ∈ {−1, 1}L×N.

We want to learn the circulant matrix W = circ (w)L ∈ R
L×D and the bias b ∈ R

L that

minimize the binary classification error.

Previous work: A previous work, Circulant binary embedding (Yu et al. 2014),

learns the circulant matrix W ∈ R
L×D to solve the classification problem as follows:

1. They pad the label matrix Z with D − L zero rows to make it D × N.

2. They solve the classification problem in the frequency domain.

3. They pick the first L rows of the resulting W.

The padding step makes this algorithm incorrect, except for L = D. For L < D, the

resulting circ (w)L is not the optimal solution. As we make the L smaller, the error

becomes larger..

Circulant Support Vector Machines:

We consider the maximum margin formulation of the support vector machines

(SVMs) and we propose a correct way to learn the optimal circulant matrix.

Consider wT
l as the l th row of the matrix W. The l th classification problem has the

following form:

min
wl∈RD,bl∈R

1

2
‖wl‖

2 + C

N
∑

n=1

ξln s.t. zln(wl
Txn + bl) ≥ 1 − ξln, ξln ≥ 0, n = 1, . . . ,N

The L problems are coupled because of W = circ (w)L.

We can write row l of W as wT
l = wTPl, where Pl ∈ R

D×D is a permutation matrix.

The SVM formulation of the l th classification problem becomes:

min
w∈RD,bl∈R

1

2
‖wTPl‖

2+C

N
∑

n=1

ξln s.t. zln(w
TPlxn+bl) ≥ 1−ξln, ξln ≥ 0, n = 1, . . . ,N.

Since PT
l Pl = I, ‖wTPl‖

2 = ‖w‖2, all the L classification problems have the same

margin term.

Let us define tln = Plxn ∈ R
D and rewrite the objective function:

min
w∈RD,bl∈R

‖w‖2 +
2C

L

L
∑

l=1

N
∑

n=1

ξln s.t.

{

zln([w;b]T [tln; el]) ≥ 1 − ξln, ξln ≥ 0

n = 1, . . . ,N, l = 1, · · · , L.

where el ∈ R
L has 1 in the l th element and zeros everywhere else.

This is an SVM problem, with NL inputs yln = [tln; el] and labels zln.

Advantages of the circulant support vector machines:

• It always returns the optimal solution, even for the case of L < D.

• It is a convex quadratic program with a unique solution.

• There are libraries available that solve SVM problems for a large number of

points in a few seconds.

• Our circulant SVM performs better than CBE in retrieval results.

6 Experiments
CIFAR-10 dataset contains 60 000 32 × 32 color images in 10 classes. We ran-

domly select 58 000/2 000 as the training/test set. Each image is represented by a

D = 4 096-dim. VGG feature vector: the output of the last layer of the VGG network.

We use the L-bit codes generated by a hashing method (ITQ) as the labels.
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We report the average accu-

racy of the L classification prob-

lems. For smaller number of bits,

CBE finds a suboptimal solution.

Our proposed method (Circulant

SVM) always finds the optimal

solution and gives a better clas-

sification accuracy.
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We use the hash functions of

the previous experiments in the

hashing setting. We report re-

call for different number of bits.

circsvm outperforms CBE. The

improvement is more clear for

smaller number of bits where

CBE is unable to find the optimal

solution.


