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. Abstract

Binary hashing is an established approach for fast, approximate image search. The
idea is to learn a hash function that maps a query image to a binary vector so that
Hamming distances approximate image similarities. An important subproblem in
binary hashing is to solve a set of independent classification problems, usually
using support vector machines (SVMs). In this paper, we show that the hash func-
tion performs faster if we learn a set of circulant SVMs instead of the independent
ones. Unlike the previously proposed algorithm that finds a suboptimal solution of
the circulant SVMs, we show that the problem can be solved exactly and efficiently
by casting it as a convex maximum margin classification problem on a modified
dataset. We confirm experimentally that our approach solves the classification
problem and the image search task better than the previous method.
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In K nearest neighbors problem, there are N training points in D-dimensional space
(usually D > 100) x; € RP,i=1,..., N. The goal is to find the K nearest neighbors

of a query x4 € RP. Exact search in the original space is O(ND) in time and space.
Image

Codes
1101

A binary hash function h takes as input
a high-dimensional vector x € RP and
maps it to an L-bit vector z h(x) €
{0,1}-orz=h(x) e {-1,1}-.

The main goal is preserving the neigh-
borhood, i.e., assign (dis)similar codes to
(dis)similar patterns.
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In the binary space, time complexity is computed based on two operations:

e Time needed to generate the binary code for the query: mapping a
D-dimensional vector to an L-bit vector takes O(LD).

e (O(1) to search for similar codes using inverted index.

Learning the binary hash function

Most hashing papers try to minimize an affinity-based objective, which directly tries
to preserve the original similarities in the binary space. With the Laplacian loss, the
objective function has the following form:

ZW,,Hh X;) — Zh,x, =0,
Ij=1

where x; € R? is the ith input data, h is the parameters of the hash function, y,m
Is the ground-truth value of the pair of points x, and X, (y,m = 1 for similar pairs
and —1 for dissimilar pairs). In this paper, we consider the linear hash function
h(x;) = sgn (Wx;) € {—1, +1}t that maps each image into an L-bit binary code.
Optimizing E(h) is difficult because h is discrete.

One popular way to solve the problem is to introduce the coordinates Z € {—1, 1}-<N
(one L bit code per point), define the objective over Z, and learn the codes and the
hash function in separate steps:

e Over Z: Learn the codes by alternating optimization over each bit.
e Over h: Learn a binary classifier for each bit independently.

min E(h h(X)h(X)" = NI

Learning the hash function h corresponds to solving L binary classification prob-
lems independently. We fit classifier / to the data (X,Z ;) for [ = 1,..., L (Xp«n =
(Xy,...,Xy) =images,Z ;= (21,...,zy) € {—1,1}N = binary codes).

n Hashing with a circulant weight matrix

A D-dim. vector w = (wy, ..., Wp_1) is the basis for the D x D circulant matrix W:
- W Wp—1 - W2 Wi
W = circ (w) = v Vo o W
_Wb—1 Wb—z W1 Vl:/o_

For L < D bits, we only need the first L rows of circ (w): circ (w), .

For a query x;, generating the binary code sgn (WXx;) involves a matrix-vector mul-
tiplication. This can be computed faster when W is circulant:

Space Complexity  Time Complexity
O(LD) O(LD)
O(D) min(O(LD), O(Dlog D))

Linear function
Circulant function

The reason is that the Discrete Fourier Transform F(-) can be computed in O(Dlog D).

1(.7'_(X) o .7:(W))) .

The binary code is generated using DFT: h(x) = sgn (Wx) = sgn (F~

. Learning circulant support vector machines

Consider the dataset X € RPN and the labels Z € {—1, 1}V,

We want to learn the circulant matrix W = circ (w), € R-*P and the bias b € R* that
minimize the binary classification error.

Previous work: A previous work, Circulant binary embedding (Yu et al. 2014),
learns the circulant matrix W € R2*P to solve the classification problem as follows:

1. They pad the label matrix Z with D — L zero rows to make it D x N.

2. They solve the classification problem in the frequency domain.

3. They pick the first L rows of the resulting W.

The padding step makes this algorithm incorrect, except for L = D. For L < D, the
resulting circ (w), is not the optimal solution. As we make the L smaller, the error
becomes larger..

Circulant Support Vector Machines:

We consider the maximum margin formulation of the support vector machines
(SVMs) and we propose a correct way to learn the optimal circulant matrix.
Consider w/ as the /th row of the matrix W. The /th classification problem has the
following form:

min N

WERDbeRZHWIH +CZ§/H st. zZp(W/ Xp+b)>1=¢&p, Ep>0, n=1,
I I

n=1
The L problems are coupled because of W = circ (w), .

We can write row / of W as w/ = w’P,, where P, € RP*" is a permutation matrix.
The SVM formulation of the Ith classification problem becomes:

.
min w'P/|"+C st. zp(WPX,+b)>1-&p, >0, n=1_... N

WeRD b,ERZ || l|| ;gln ln( [N /) gln gln

Since P/P, = I, |w'P,||* = |w||%, all the L classification problems have the same

margin term.

Let us define t,, = P,;x,, € R” and rewrite the objective function:

Tl B
nin wiz+ 2633 6 st {Z/f'([w'b] trie]) 2 1= &n. &> 0

wWeRD beR T n=1,... N [=1-.- L.

where e, € Rt has 1 in the /th element and zeros everywhere else.
This is an SVM problem, with NL inputs y,, = [t,: /] and labels z,,.

Advantages of the circulant support vector machines:
o It always returns the optimal solution, even for the case of L < D.
e |tis a convex quadratic program with a unique solution.

e There are libraries available that solve SVM problems for a large number of
points in a few seconds.

e Our circulant SVM performs better than CBE in retrieval results.

@ Experiments

CIFAR-10 dataset contains 60000 32 x 32 color images in 10 classes. We ran-
domly select 58 000/2 000 as the training/test set. Each image is represented by a
D = 4 096-dim. VGG feature vector: the output of the last layer of the VGG network.
We use the L-bit codes generated by a hashing method (ITQ) as the labels.
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