
Supplementary material for:

Optimizing affinity-based binary hashing using auxiliary coordinates

Ramin Raziperchikolaei Miguel Á. Carreira-Perpiñán

Electrical Engineering and Computer Science, University of California, Merced

http://eecs.ucmerced.edu

May 20, 2016

Abstract

We provide the following. 1) Pseudocode for our MAC algorithm. 2) Proofs for the statements in
the main paper [12] (paragraph “theoretical results”) regarding the path of optima of the LP objective
function, and the stopping criterion. 3) A detailed description of the stopping criterion and the practical
construction of a good µ schedule. 4) A detailed description of the Z step of our MAC algorithm to learn
the binary codes given the hash functions. 5) Extended experiments with additional datasets, different
numbers of bits b, precision/recall curves, and training on centered and normalized vectors.

1 Theoretical results

We give theoretical results regarding the main paper [12]. We quote the following equations from that paper,
to which we refer frequently:

• The affinity-based objective function we want to optimize:

minL(h) =

N
∑

n,m=1

L(h(xn),h(xm); ynm). (1)

• The MAC-constrained problem:

min
h,Z

N
∑

n=1

L(zn, zm; ynm) s.t. z1 = h(x1), · · · , zN = h(xN). (2)

• The quadratic-penalty objective function:

minLP (h,Z;µ) =

N
∑

n,m=1

L(zn, zm; ynm) + µ

N
∑

n=1

‖zn − h(xn)‖
2

s.t. z1, . . . , zN ∈ {−1, 1}
b. (3)

Fig. 1 gives the overall MAC algorithm to learn a hash function by optimizing an affinity-based loss function.

input XD×N = (x1, . . . ,xN), YN×N = (ynm), b ∈ N

Initialize Zb×N = (z1, . . . , zN) ∈ {0, 1}bN

for µ = 0 < µ1 < · · · < µ∞

for i = 1, . . . , b h step

hi ← fit hash function to (X,Z·i)
repeat Z step

for i = 1, . . . , b
Z·i ← approximate minimizer of LP (h,Z;µ) over Z·i

until no change in Z or maxit cycles ran
if Z = h(X) then stop

return h, Z = h(X)

Figure 1: MAC algorithm to optimize an affinity-based loss function for binary hashing.

1

http://eecs.ucmerced.edu

1.1 Summary of results

We characterize the relation between L(h), the objective function of eq. (1) we really want to minimize, and
LP (Z,h;µ), the proxy function of eq. (3) we actually minimize as µ→∞. We establish the following:

• A global minimizer of L(h) can actually be found by globally minimizing LP (Z,h;µ) for µ ≥ µ∞. This
means we need not drive µ → ∞. Also, the graph of the minima of LP is always below the graph of
the minima of L but they coincide for µ ≥ µ∞.

• The global minimum of LP as a function of µ ≥ 0 is a nonnegative, nondecreasing, continuous and
piecewise linear function and it has a finite number of pieces 0 < µ1 < · · · < µ∞ < ∞. For an
algorithm, this implies that there is no need to start with µ < µ1, and that no further changes occur
for µ > µ∞.

• If instead of considering global optimization over (Z,h) for each µ one considers an alternating op-
timization as in the MAC algorithm, then the approximate minima of LP is also a piecewise linear
function. So one can start with µ ≥ µ1 and the algorithm stops at a finite µ value, which occurs
whenever Z = h(X) after a Z step. However, the resulting (Z,h) need not be a global minimizer of
LP or L. The result depends on the initial Z value (for µ = 0) and on the schedule of µ values used.
Following the path over µ slowly leads to larger improvements over the initial Z.

These results are in stark contrast with the behavior of quadratic-penalty methods in continuous optimization
[11]. In the latter, the path of minimizers is a continuous function of µ, and one must drive µ→∞ in order
for the path of global minima of the quadratic-penalty objective function to reach a minimum of the original
objective function. Also, with nonconvex problems there are different such paths, each leading to a different
local minimum or stationary point in general, and each path may only be defined for sufficiently large values
of µ. Finally, in continuous optimization ill-conditioning typically appears as µ → ∞, because the Hessian
of the penalty term is low-rank and dominates the Hessian of the quadratic-penalty function for large µ.
Hence, numerically optimizing at large µ values has very slow convergence. This is the reason why practical
optimization with quadratic-penalty methods requires following the path from small values of µ.

In our case, the geometry of this path is simpler. The path is piecewise linear, with (Z,h) being constant
within each piece, so the path is really a finite sequence of (Zi,hi) pairs. Ill-conditioning does not arise
because we stop with a finite µ (and the optimization over Z works on a discrete space anyway). It is
tempting to solve the problem by doing a minimization of LP for a single, large enough value of µ directly,
since this will solve the problem over L (from theorems 1.2–1.3). However, this requires finding the global
minimum of LP over (Z,h) jointly, which is impractical, and alternating optimization will generally not find
it. The reason is that, if we set µ to a large enough value, alternating optimization over (Z,h) of LP will
stop in one step (theorem 1.12) with a suboptimal result corresponding to fitting h to the current Z (thus
behaving like a “filter”, or two-step, approach), where the quality of the resulting h is entirely dependent on
the Z it is fitted to. Hence, in practice we still have to follow the path starting from small µ. By starting the
alternating optimization from µ = 0 and following the path slowly, we let the algorithm adjust the initial
codes (which are optimal by themselves, because they were obtained by minimizing E(Z) regardless of h)
so that they are eventually realizable by a hash function h ∈ H. From this point of view, following the path
leads us to a better Z value, setting the stage for this last step (for sufficiently large µ), where the algorithm
fits h with no error and stops.

2

1.2 Notation and preliminaries

We consider a more general type of objective function than the one in eqs. (1), (2) and (3), because the
theoretical development simplifies a bit and is more generally applicable. Consider the optimization problem

min
h∈H
L(h) (4)

where h:RD → Z is a function belonging to a set of functions H (possibly uncountably infinite) and Z is a
finite set. (In binary hashing, Z = {0, 1}b, h is a b-bit hash function and H could be the set of thresholded
linear functions, for example.) We define L(h) = E(h(X)), where h(X) = (h(x1), . . . ,h(xN)) ∈ ZN and
E(Z) is w.l.o.g. a nonnegative function of Z = (z1, . . . , zN) ∈ ZN . (In binary hashing, E(Z) is an affinity-
based loss function as in equation (1), Z are the b × N binary codes, or binary embedding, and h(X) are
the b×N binary codes produced by a hash function h when applied to a dataset X.)

For each µ ≥ 0, we define the penalized objective function

LP (Z,h;µ) = E(Z) + µP (Z,h) (5)

where P (Z,h) is a “penalty” function satisfying P (Z,h) ≥ 0 ∀Z ∈ ZN , h ∈ H and P (Z,h) = 0⇔ Z = h(X).
That is, P penalizes violations of the constraint Z = h(X). (In eq. (3) we use a quadratic penalty

P (Z,h) = ‖Z− h(X)‖
2
, equivalent to the Hamming distance between Z and h(X). Using a more general

penalty P allows us to consider, for example, weighted penalties for each 1-bit hash function hi.) We will
also require the following assumption:

Assumption 1.1. For each Z ∈ ZN , ∃!h∗ ∈ H: P (Z,h∗) < P (Z,h) ∀h ∈ H, h 6= h∗.

This assumption captures the notion that there is a unique best-fit h of the inputs X to the binary codes
Z. This assumption is not essential but simplifies the development. If ties exist, they could be broken in
some arbitrary way.

We will use the following shorthand notation. Let Z1, . . . ,Z|Z| be the |Z| elements of Z, labeled w.l.o.g.
so that E(Z1) ≤ · · · ≤ E(Z|Z|), and define the E-error ei = E(Zi) ≥ 0, the optimal hash function hj =
argminh∈H P (Zj ,h) (which is well defined by assumption 1.1), and the P -error pij = P (Zi,hj), for i, j =
1, . . . , |Z|. Then 0 ≤ pii < pij if i 6= j and 0 ≤ e1 ≤ · · · ≤ e|Z|. (In binary hashing, ei is the ith smallest

error over all 2Nb binary codes and pij is the Hamming distance between Zi and hj(X). Note that we
do not require e1 < · · · < e|Z| (i.e., strict inequality), because practical objective functions usually have
codes Zi 6= Zj with ei = ej caused by symmetries arising from the use of the Hamming distance in the loss
function. For example, flipping all the bits in Z, which corresponds to relabeling the 0s as 1s and vice versa,
will not change the loss.)

We begin with two theorems that connect the penalized objective LP with the objective L. The first
one tells us that we can solve the original problem on L by solving the problem on LP for a finite value of
µ (µ ≥ µ∞), so LP is an exact penalty function [11]. The second one tells us that the graph of the minima
of LP is always below the graph of the minima of L but they coincide for µ ≥ µ∞.

Theorem 1.2. h ∈ H is a global minimizer of L(h) ⇔ (Z,h) with Z = h(X) is a global minimizer of LP
as µ→∞.

Proof. This follows from the fact that as µ→∞ then the problem “minZ,h LP (Z,h;µ)” becomes equivalent
to “minZ,h E(Z) s.t. Z = h(X)” and to “minh L(h)”, since L(h) = E(h(X)).

Theorem 1.3. For any h ∈ H:

min
Z∈Z
LP (Z,h;µ) ≤ L(h) ∀µ ≥ 0, min

Z∈Z
LP (Z,h;µ) = L(h) ∀µ ≥ µ∞.

Proof. L(h) = E(h(X)) = E(h(X)) + µP (h(X),h) since P (h(X),h) = 0. Hence

min
Z∈Z
LP (Z,h;µ) = min

Z∈Z
E(Z) + µP (Z,h) ≤ E(h(X)) + µP (h(X),h) = L(h).

The second part follows from P (Z,h) = 0 and Z = h(X) for µ ≥ µ∞.

3

1.3 Algorithm-free characterization of the optima path

We now characterize the optimal value of LP as a function of µ. By this we mean the true global minimum,
whether or not this can be found efficiently by an algorithm; section 1.4 considers the case where we use an
algorithm to find an approximate minimum of LP . Call L

∗
P (µ) = minZ∈Z,h∈HLP (Z,h;µ) for each µ ≥ 0.

Theorem 1.4. The function L∗P (µ) is nonnegative, nondecreasing, continuous and piecewise linear over
µ ≥ 0 and it has a finite number of pieces. Specifically,

L∗P (µ) =

α1 + µβ1, µ ∈ [0, µ1]

α2 + µβ2, µ ∈ [µ1, µ2]

. . .

αK+1 + µβK+1, µ ∈ [µK ,∞)

where αi + µiβi = αi+1 + µiβi+1 and αi ≥ 0 for i = 1, . . . ,K, and β1 > β2 > · · · > βK+1 = 0.

Proof. Since Z is finite and the minimum of P (Z,h) given Z is unique (by assumption 1.1), we have

L∗P (µ) = min
Z∈Z,h∈H

LP (Z,h;µ) = min
1≤i≤|Z|

(ei + µpii)

so L∗P (µ) is the minimum of |Z| straight lines with nonnegative slopes pii and nonnegative intercepts ei in
the ordinate axis, for each µ ≥ 0 (see fig. 2). Consider the following procedure to construct L∗P (µ). Call
µ0 = 0.

1. Remove non-optima (or redundant optima). For i = 1, . . . , |Z|, remove all j > i: ei ≤ ej and pii ≤ pjj .
This removes all lines that are lower bounded by some other line in µ ≥ 0, and picks the one with
lower index in case of ties.
Relabel the remaining k lines as 1, . . . , k so that e1 < · · · < ek and p11 > · · · > pkk.

2. Line 1 intersects all other lines at points with positive abscissa µ. Let µ1 > 0 be the smallest such
abscissa. Clearly, line 1 is strictly below all other lines in [0, µ1).

The procedure now repeats these two steps for µ = µ1 using the set of lines i = 2, . . . , k, each having a slope
pii and an ordinate value of ei + µ1pii at µ = µ1, and continues in this way. It stops when there is only one
line left. Call the corresponding µ value µK . This produces a sequence of µ values 0 = µ0 < µ1 < · · · < µK

with 0 ≤ K < |Z|, and a nondecreasing continuous piecewise linear function of the form ei + µpii within
each [µi−1, µi], where ei + µipii = ei+1 + µipi+1,i+1 and pii > pi+1,i+1 ≥ 0. It is nondecreasing because each
line has a nonnegative slope.

µ0 = 0 µ1 µ2 µ3 µ4 = µ∞

e1

e2

e3

e4

e5

e6

e7

e8
e9

e10

µ

L
P

Figure 2: Illustration of the piecewise linear minimum function L∗P (µ) in theorem 1.4.

4

Corollary 1.5. Let (Z1,h1) be a global minimum of LP (Z,h;µ) for µ→ 0+ (that is, Z1 is a global minimum
of E(Z) and h1 = argminh∈H P (Z1,h)). Then ∃µ1 > 0: (Z1,h1) is a global minimizer of LP (Z,h;µ) for
µ ≤ µ1.

Corollary 1.6. ∃µK > 0, ZK ∈ Z, hK ∈ H such that (ZK ,hK) is a global minimizer of LP (Z,h;µ)
∀µ ≥ µK .

Corollary 1.7. ∃µ ∈ (0,∞): h∞ ∈ H is a global minimizer of L(h) ⇔ (Z∞,h∞), where Z∞ = h∞(X), is
a global minimizer of LP (Z,h;µ) ∀µ ≥ µ∞.

Proof. It follows from theorems 1.2 and corollary 1.6.

Theorem 1.8. Let Z1 ∈ Z be a global minimizer of E(Z) and h1 = argminh∈H P (Z1,h). If P (Z1,h) ≤
P (Z,h) ∀Z ∈ Z, ∀h ∈ H then h1 is a global minimizer of L(h) and (Z1,h1) is a global minimizer of
LP (Z,h;µ) ∀µ ≥ 0.

Proof. LP (Z1,h1;µ) = E(Z1) + µP (Z1,h1) ≤ E(Z) + µP (Z,h) ∀Z ∈ Z, ∀h ∈ H, ∀µ ≥ 0. The second part
follows from theorem 1.2.

1.4 Algorithm-based characterization of the optima path

We consider approximately minimizing LP (Z,h;µ) by alternating optimization1:

• Over Z given h: minZ∈Z LP (Z,h;µ) = E(Z)+µP (Z,h). This is a combinatorial optimization problem.

• Over h given Z: minh∈H LP (Z,h;µ)⇔ minh∈H P (Z,h). This is a continuous optimization problem.

We make the following assumptions. Assumption 1.9 is practical for several important function classes such
as linear SVMs and other classifiers whose training can be done by convex optimization. Assumption 1.10
includes many combinatorial optimization algorithms, in particular alternating optimization over bits (or
groups of bits) of Z.

Assumption 1.9. We have access to an efficient algorithm that can find the global minimizer of P (Z,h)
over h ∈ H.

Assumption 1.10. We have access to a move-based algorithm for approximately minimizing LP (Z,h;µ)
over Z, initialized from Z = Zinit (usually the result from the previous MAC iteration, i.e., warm-start).
This tries a set of points for Z that are usually “close” to Zinit and picks the one with lowest LP value. The
move set always contains Zinit and also h(X) (since, for large enough µ, this will be the global minimizer).
We further assume the algorithm is deterministic given its initialization Zinit, i.e., it returns the same result
if called with the same µ and h. Hence, this algorithm is guaranteed to decrease or leave unchanged LP
compared to Zinit, although in general it is not guaranteed to find a global minimizer of LP over Z. The
algorithm can be made exact (i.e., return a global minimizer) by using as move set the entire Z, but this is
computationally intractable.

We use the notation “MINZ LP (Z,h;µ)” or “ARGMINZ LP (Z,h;µ)” to indicate an approximate mini-
mization by an algorithm satisfying assumption 1.10, i.e., the output of the algorithm when approximately
minimizing LP (Z,h;µ) over Z for given h and µ.

We have the following results.

Theorem 1.11. For any h ∈ H:

MINZ LP (Z,h;µ) ≤ L(h) ∀µ ≥ 0, MINZ LP (Z,h;µ) = L(h) ∀µ ≥ µ∞.

Proof. As for theorem 1.3 but taking “Z ∈ move set” rather than “Z ∈ Z”, and noting that h(X) is in the
move set.

1Alternating optimization here does not refer to minimizing E(Z) itself by alternating optimization, but to minimizing
LP (Z,h;µ) alternatingly over Z and over h, for fixed µ, as in our MAC algorithm.

5

Theorem 1.12. There exists a µ∗ > 0 such that, for any µ ≥ µ∗, running alternating optimization (first over
h, then over Z) of LP (Z,h;µ) from an initial point Zinit stops after one step with h = argminh∈H P (Zinit,h)
and Z = h(X).

Proof. The step over h gives h = argmin
h∈H P (Zinit,h). Then, the step over Z is MINZ E(Z) + µP (Z,h),

which for µ ≥ µ∗ gives as optimal Z that which minimizes P (Z,h), i.e., Z = h(X), and the algorithm
stops.

Theorem 1.13. The MAC algorithm (fig. 1) stops when µ ≥ µ∞, and this can be achieved in a finite number
of iterations.

Proof. From corollary 1.7, for µ ≥ µ∞ a global minimizer of LP occurs at Z = h(X), and the algorithm
always tries h(X) when optimizing LP over Z. Hence, if the MAC algorithm uses a finite sequence of µ
values µ0 < µ1 < · · · < µK such that µK ≥ µ∞, it will stop in a finite number of iterations. Such sequence
can be generated using an initial value µ0 > 0 and repeatedly multiplying it times a constant α > 1, i.e.,
µi = µ0α

i.

Theorem 1.14. For any h ∈ H and µ ≥ 0, if MINZ E(Z) + µP (Z,h) occurs at Z = h(X) then the
alternating optimization will make no further changes to Z or h, for any µ′ ≥ µ.

Proof. Assume the Z step produces Z = h(X). We first run an h step. This does not change h, because
P (h(X),h) = 0 is a global minimum (regardless of the value of µ). We then run a Z step. This again
returns Z = h(X), since the algorithm is deterministic. This also holds for any larger value µ′ > µ, because
E(Z) + µ′P (Z,h) ≥ E(Z) + µP (Z,h) ∀Z ∈ Z and E(Z) + µ′P (Z,h) = E(Z) + µP (Z,h) if Z = h(X).

Theorem 1.14 means that whenever Z = h(X) after a Z step (regardless of the value of µ) we can stop
because the algorithm will not change Z or h anymore, so we can use this as a reliable stopping criterion
that is easy to check. However, if Z = h(X) occurs after an h step, the algorithm can still change Z in
the next Z step. This can happen, for example, if we initialize the MAC algorithm (for small µ) with a Z

for which minh∈H P (Z,h) = 0 (e.g. if the initial binary codes are linearly separable and h is a thresholded
linear function), but for which E(Z) is large. The following Z step will pick a different Z that lowers E(Z)
sufficiently to compensate for an increase in µP (Z,h).

Theorem 1.15. The function MINZ,h LP (Z,h;µ) (i.e., the approximate minimum value of LP obtained by
an algorithm satisfying assumptions 1.9 and 1.10) is nonnegative, nondecreasing, continuous and piecewise
linear over µ ≥ 0 and it has a finite number of pieces, on intervals 0 < µ′

1 < · · · < µ′
∞ <∞.

Proof. The proof is similar to that of theorem 1.4, except that now the total possible number of lines is |Z|2

rather than |Z|.

6

2 Stopping criterion, schedule over µ and path of optimal values

Once Z = h(X) after a Z step (regardless of the value of µ), the MAC algorithm will make no further changes
to Z or h, since then the constraints are satisfied (theorem 1.14). This gives us a reliable stopping criterion
that is easy to check, and the MAC algorithm will stop after a finite number of iterations (see below).

Among the theoretical results of section 1, we know that the path of minimizers of LP over the continuous
penalty parameter µ ∈ [0,∞) is in fact discrete, with changes to (Z,h) happening only at a finite number
of values 0 < µ1 < · · · < µ∞ < ∞. Based on this and on our practical experience, we have found that
the following approach leads to good schedules for µ with little effort. We use exponential schedules, of
the form µi = µ1α

i−1 for i = 1, 2, . . . , so the user has to set only two parameters: the initial µ1 and the
multiplier α > 1. We choose exponential schedules because typically the algorithm makes most progress
at the beginning, and it is important to track a good minimum there. The upper value µ∞ past which no
changes occur will be reached by our exponential schedule in a finite number of iterations, and our stopping
criterion will detect that. We set the multiplier to a value 1 < α < 2 that is as small as computationally
convenient. If α is too small, the algorithm will take many iterations, some of which may not even change Z
or h (because the path of minima is discrete). If α is too big, the algorithm will reach too quickly a stopping
point, without having had time to find a better minimum. As for the initial µ1, we estimate it by trying
values (exponentially spaced) until we find a µ for which changes to Z from its initial value (for µ = 0) start
to occur. (It is also possible to find lower and upper bounds for µ1 and µ∞, respectively, for a particular
loss function, such as KSH, eSPH or EE.) Overall, the computational time required to estimate µ1 and α is
comparable to running a few extra iterations of the MAC algorithm.

Finally, in practice we use a form of early stopping in order to improve generalization. We use a small
validation set to evaluate the precision achieved by the hash function h along the MAC optimization. If
the precision decreases over that of the previous step, we ignore the step and skip to the next value of µ.
Besides helping to avoid overfitting, this saves computation, by avoid such extra optimization steps. Since
the validation set is small, it provides a noisy estimate of the generalization ability at the current iterate, and
this occasionally leads to skipping a valid µ value. This is not a problem because the next µ value, which is
close to the one we skipped, will likely work. At some point during the MAC optimization, we do reach an
overfitting region and the precision stops increasing, so the algorithm will skip all remaining µ values until
it stops. In summary, using this validation procedure guarantees that the precision (in the validation set) is
greater or equal than that of the initial Z, thus resulting in a better hash function.

7

3 Z step of the MAC algorithm

In the Z step of our algorithm, the goal is to minimize the objective function in eq. (3) over the binary codes
zn ∈ {0, 1}

b given the hash function h. It is an NP-complete problem in Nb binary variables. As mentioned
in the paper, two recent works have proposed practical approaches for this problem based on alternating
optimization: a quadratic surrogate method [8], and a GraphCut method [9]. In both methods, the starting
point is to apply alternating optimization over the ith bit of all points given the remaining bits are fixed for
all points (for i = 1, . . . , b), and to solve the optimization over the ith bit approximately.

In the main paper [12], we explained briefly our modification to these methods. Here, we give a detailed
explanation. We start by describing each method in their original form (which applies to the loss function
over binary codes, i.e., the first term in LP), and then we give our modification to make it work with our Z
step objective (the regularized loss function over binary codes, i.e., the complete LP).

3.1 Solution using a quadratic surrogate method [8]

This is based on the fact that any loss function that depends on the Hamming distance of two binary variables
can be equivalently written as a quadratic function of those two binary variables [8]. Since this is the case
for every term L(zn, zm; ynm) (because only the ith bit in each of zn and zm is free), we can write the first
term in LP as a binary quadratic problem. We now consider the second term (on µ) as well. (We use a
similar notation as that of [8].) The optimization for the ith bit can be written as:

min
z(i)

N
∑

n,m=1

li(zni, zmi) + µ

N
∑

n=1

(zni − hi(xn))
2 (6)

where li = L(zni, zmi, z̄n, z̄m; ynm) is the loss function defined on the ith bit, zni is the ith bit of the nth
point, z̄n is a vector containing the binary codes of the nth point except the ith bit, and hi(xn) is the ith
bit of the binary code of the nth point generated by the hash function h. Lin et al. [8] show that l(z1, z2)
can be replaced by a binary quadratic function

l(z1, z2) =
1

2
z1z2

(

l(11) − l(−11)
)

+ constant (7)

as long as l(1, 1) = l(−1,−1) = l(11) and l(1,−1) = l(−1, 1) = l(−11), where z1, z2 ∈ {−1, 1}. Equation (7)
helps us to rewrite the optimization (6) as the following:

min
z(i)

N
∑

n,m=1

1

2
znizmi

(

l(11) − l(−11)
)

+ µ

N
∑

n=1

(zni − hi(xn))
2.

By defining anm =
(

l
(11)
(inm)−l

(−11)
(inm)

)

as the (n,m) element of a matrixA ∈ R
N×N and ignoring the coefficients,

we have the following optimization problem:

min
z(i)

zT(i)Az(i) + µ
∥

∥z(i) − hi(X)
∥

∥

2
s.t. z(i) ∈ {−1,+1}N

where hi(X) = (hi(x1), . . . , hi(xN))T is a vector of length N (one bit per data point). Both terms in the
above minimization are quadratic on binary variables. This is still an NP-complete problem (except in special
cases), and we approximate it by relaxing it to a continuous quadratic program (QP) over z(i) ∈ [−1, 1]N and
binarizing its solution. In general, the matrix A is not positive definite and the relaxed QP is not convex, so
we need an initialization. (However, the term on µ adds µI to A, so even if A is not positive definite, A+µI

will be positive definite for large enough µ, and the QP will be convex.) We construct an initialization by
converting the binary QP into a binary eigenproblem:

min
α

α
TBα s.t. α0 = 1, z(i) ∈ {−1, 1}

N ,α =

(

z(i)
α0

)

, B =

(

A −µ
2hi(X)

−µ
2hi(X)T 0

)

.

To solve this problem we use spectral relaxation, where the constraints z(i) ∈ {−1,+1}N and zi+1 = 1 are
relaxed to ‖α‖ = N + 1. The solution to this problem is the eigenvector corresponding to the smallest

8

eigenvalue of B. We use the truncated eigenvector as the initialization for minimizing the relaxed, bound-
constrained QP:

min
z(i)

zT(i)Az(i) + µ
∥

∥z(i) − hi(X)
∥

∥

2
s.t. z(i) ∈ [−1, 1]N

which we solve using L-BFGS-B [14].
As noted above, the Z step is an NP-complete problem in general, so we cannot expect to find the global

optimum. It is even possible that the approximate solution could increase the objective over the previous
iteration’s Z (this is likely to happen as the overall MAC algorithm converges). If that occurs, we simply
skip the update, in order to guarantee that we decrease monotonically on LP , and avoid oscillating around
a minimum.

3.2 Solution using a GraphCut algorithm [9]

To optimize over the ith bit (given all the other bits are fixed), we have to minimize eq. (6). In general,
this is an NP-complete problem over N bits (the ith bit for each image), with the form of a quadratic
function on binary variables. We can apply the GraphCut algorithm [1, 2, 7], as proposed by the FastHash
algorithm of Lin et al. [9]. This proceeds as follows. First, we assign all the data points to different, possibly
overlapping groups (blocks). Then, we minimize the objective function over the binary codes of the same
block, while all the other binary codes are fixed, then proceed with the next block, etc. (that is, we do
alternating optimization of the bits over the blocks). Specifically, to optimize over the bits in block B, we

define anm =
(

l
(11)
(inm) − l

(−11)
(inm)

)

and, ignoring the constants, we can rewrite equation (6) as:

min
z(i,B)

∑

n,m∈B

anmznizmi + 2
∑

n∈B,m 6∈B

anmznizmi − µ
∑

n∈B

znihi(xn).

We then rewrite this equation in the standard form for the GraphCut algorithm:

min
z(i,B)

∑

n∈B

∑

m∈B

vnmznizmi +
∑

n∈B

unmzni

where vnm = anm, unm = 2
∑

m 6∈B anmzmi−µhi(xn). To minimize the objective function using the GraphCut
algorithm, the blocks have to define a submodular function. For the objective functions that we explained
in the paper, this can be easily achieved by putting points with the same label in one block (Lin et al. [9]
give a simple proof of this).

Unlike in the quadratic surrogate method, using the GraphCut algorithm with alternating optimization
on blocks defining submodular functions is guaranteed to find a Z that has a lower or equal objective value
that the initial one, and therefore to decrease monotonically LP .

9

4 Experiments

4.1 Supervised datasets

Figures 3– 5 amplify the figures in the main paper [12] with results with different numbers of bits b, preci-
sion/recall curves, and training on centered and normalized vectors.

4.2 Unsupervised dataset

Although affinity-based hashing is intended to work with supervised datasets, it can also be used with
unsupervised ones, and our MAC approach applies just as well. We use the SIFT1M dataset [6], which
contains N = 1 000 000 training high-resolution color images and 10 000 test images, each represented by
D = 128 SIFT features. The experiments and conclusions are generally the same as with supervised datasets,
with small differences in the settings of the experiments. In order to construct an affinity-based objective
function, we define neighbors as follows. For each point in the training set we use the κ+ = 100 nearest
neighbors as positive (similar) neighbors, and κ− = 500 points chosen randomly among the remaining points
as negative (dissimilar) neighbors. We report precision and precision/recall for the test set queries using as
ground truth (set of true neighbors in original space) the K nearest neighbors in unsupervised datasets, and
all the training points with the same label in supervised datasets.

Fig. 6 shows results using KSH and eSLPH loss functions, respectively, with different sizes of retrieved
neighbor sets and using 8 to 32 bits. As with the supervised datasets, it is clear that the MAC algorithm
finds better optima and that MACcut is generally better than MACquad.

Fig. 8 shows results comparing with binary hashing methods. All methods are trained on a subset
of 5 000 points. We consider two types of methods. In the first type, we create pseudolabels for each
point and then apply supervised methods as in CIFAR (in particular, cut/quad and MACcut/MACquad,
using the KSH loss function). The pseudolabels ynm for each training point xn are obtained by declaring
as similar points its κ+ = 100 true nearest neighbors and as dissimilar points a random subset of κ− =
500 points among the remaining points. In the second type, we use purely unsupervised methods (not
based on similar/dissimilar affinities): thresholded PCA (tPCA), Iterative Quantization (ITQ) [4], Binary
Autoencoder (BA) [3], Spectral Hashing (SH) [13], AnchorGraph Hashing (AGH) [10], and Spherical Hashing
(SPH) [5]. The results are again in general agreement with the conclusions in the main paper.

10

b = 16 b = 32 b = 48

lo
ss

fu
n
ct
io
n
L

5 10 15
5.2

5.4

5.6

5.8

x 10
6

iterations
5 10 15

5.2

5.3

5.4

5.5

5.6

5.7

x 10
6

iterations
2 4 6 8 10 12 14

5.2

5.4

5.6

5.8
x 10

6

ker−MACcut
lin−MACcut
ker−MACquad
lin−MACquad
ker−cut
lin−cut
ker−quad
lin−quad
ker−KSH

iterations

p
re
ci
si
o
n

600 700 800 900 1000
30

35

40

45

48

k
600 700 800 900 1000

30

35

40

45

48

k
600 700 800 900 1000

30

35

40

45

48

k

K
S
H
,
κ
+
=

1
0
0
,
κ
−
=

5
0
0
,
K

=
2
0
0
0
0

p
re
ci
si
o
n

0 20 40 60 80 100
0

10

20

30

40

50

recall
0 20 40 60 80 100

0

10

20

30

40

50

recall
0 20 40 60 80 100

0

10

20

30

40

50

ker−MACcut
lin−MACcut
ker−MACquad
lin−MACquad
ker−cut
lin−cut
ker−quad
lin−quad
ker−KSH

recall

lo
ss

fu
n
ct
io
n
L

5 10 15

5.4

5.5

5.6

5.7

5.8x 10
6

iterations
2 4 6 8 10 12

5.4

5.5

5.6

5.7

5.8x 10
6

iterations
2 4 6 8 10 12

5.4

5.5

5.6

5.7

5.8x 10
6

iterations

p
re
ci
si
o
n

600 700 800 900 1000

35

40

45

49

k
600 700 800 900 1000

35

40

45

49

k
600 700 800 900 1000

35

40

45

49

k

eS
P
L
H
,
κ
+
=

1
0
0
,
κ
−
=

5
0
0
,
K

=
2
0
0
0
0

p
re
ci
si
o
n

0 20 40 60 80 100
0

10

20

30

40

50

recall
0 20 40 60 80 100

0

10

20

30

40

50

recall
0 20 40 60 80 100

0

10

20

30

40

50

ker−MACcut
lin−MACcut
ker−MACquad
lin−MACquad
ker−cut
lin−cut
ker−quad
lin−quad

recall

Figure 3: KSH (top panel) and eSPLH (bottom panel) loss functions on CIFAR dataset, using b = 16 to 48
bits. The rows in each panel show the value of the loss function L, the precision for k retrieved points and
the precision/recall (at different Hamming distances).

11

b = 16 b = 32 b = 48 b = 64

p
re
ci
si
o
n

500 600 700 800 900 1000
24

28

32

36

40

MACcut
MACquad
cut
quad
KSH
ITQ
BRE
STH

k
500 600 700 800 900 1000

24

28

32

36

40

k
500 600 700 800 900 1000

24

28

32

36

40

k
500 600 700 800 900 1000

24

28

32

36

40

k

C
IF
A
R

p
re
ci
si
o
n

20 40 60 80 100

10

20

30

40
45

MACcut
MACquad
cut
quad
KSH
ITQ
BRE
STH

recall
20 40 60 80 100

10

20

30

40
45

recall
20 40 60 80 100

10

20

30

40
45

recall
20 40 60 80 100

10

20

30

40
45

recall

p
re
ci
si
o
n

5000 6000 7000 8000 9000 10000
62

65

68

71

74

77

MACcut
MACquad
cut
quad
KSH
ITQ
BRE
STH

k
5000 6000 7000 8000 9000 10000
62

65

68

71

74

77

k
5000 6000 7000 8000 9000 10000
62

65

68

71

74

77

k
5000 6000 7000 8000 9000 10000
62

65

68

71

74

77

k

In
fi
n
it
e
M
N
IS
T

p
re
ci
si
o
n

20 40 60 80 100

10

30

50

70

90

MACcut
MACquad
cut
quad
KSH
ITQ
BRE
STH

recall
20 40 60 80 100

10

30

50

70

90

recall
20 40 60 80 100

10

30

50

70

90

recall
20 40 60 80 100

10

30

50

70

90

recall

Figure 4: Comparison with binary hashing methods on CIFAR (top panel) and Infinite MNIST (bottom
panel), using a linear hash function, using b = 16 to 64 bits. The rows in each panel show the precision for
k retrieved points, for a range of k, and the precision/recall at different Hamming distances.

12

b = 16 b = 32 b = 48 b = 64

p
re
ci
si
o
n

500 600 700 800 900 1000
24

28

32

36

40

MACcut
MACquad
cut
quad
KSH
ITQ
BRE
STH

k
500 600 700 800 900 1000

24

28

32

36

40

k
500 600 700 800 900 1000

24

28

32

36

40

k
500 600 700 800 900 1000

24

28

32

36

40

k

C
IF
A
R

p
re
ci
si
o
n

20 40 60 80 100

10

20

30

40
45

MACcut
MACquad
cut
quad
KSH
ITQ
BRE
STH

recall
20 40 60 80 100

10

20

30

40
45

recall
20 40 60 80 100

10

20

30

40
45

recall
20 40 60 80 100

10

20

30

40
45

recall

Figure 5: As in fig. 4 but using the cosine similarity instead of the Euclidean distance to find neighbors (i.e.,
all the points are centered and normalized before training and testing), on CIFAR.

13

b = 8 b = 16 b = 24 b = 32
lo
ss

fu
n
ct
io
n
L

5 10 15 20
2.6

2.62

2.64

2.66

2.68

2.7x 10
6

iterations
5 10 15

2.5

2.52

2.54

2.56

2.58

x 10
6

iterations
5 10 15

2.46

2.48

2.5

2.52

2.54x 10
6

iterations
5 10 15

2.46

2.48

2.5

2.52

x 10
6

ker−MACcut
lin−MACcut
ker−MACquad
lin−MACquad
ker−cut
lin−cut
ker−quad
lin−quad
ker−KSH

iterations

p
re
ci
si
o
n

1 1.2 1.4 1.6 1.8 2
x 10

4

18

20

22

24

26

k
1 1.2 1.4 1.6 1.8 2

x 10
4

26

28

30

32

34

36

38

40

k
1 1.2 1.4 1.6 1.8 2

x 10
4

32

34

36

38

40

42

44

46

k
1 1.2 1.4 1.6 1.8 2

x 10
4

36

38

40

42

44

46

48

50

k

K
S
H
,
κ
+
=

1
0
0
,
κ
−
=

5
0
0
,
K

=
2
0
0
0
0

p
re
ci
si
o
n

0 20 40 60 80 100
0

10

20

30

recall
0 20 40 60 80 100

0

20

40

60

recall
0 20 40 60 80 100

0

20

40

60

80

recall
0 20 40 60 80 100

0

20

40

60

80

ker−MACcut
lin−MACcut
ker−MACquad
lin−MACquad
ker−cut
lin−cut
ker−quad
lin−quad
ker−KSH

recall

lo
ss

fu
n
ct
io
n
L

1 3 5 7 9 11 13 15 17 19
2.64

2.65

2.66

2.67

2.68

2.69x 10
6

iterations
1 3 5 7 9 11 13 15

2.59

2.6

2.61

2.62

x 10
6

iterations
1 3 5 7 9 11 13 15

2.57

2.58

2.59

2.6

2.61x 10
6

iterations
1 3 5 7 9 11 13 15

2.57

2.58

2.59

2.6x 10
6

ker−MACcut
lin−MACcut
ker−MACquad
lin−MACquad
ker−cut
lin−cut
ker−quad
lin−quad

iterations

p
re
ci
si
o
n

1 1.2 1.4 1.6 1.8 2
x 10

4

18

20

22

24

26

28

k
1 1.2 1.4 1.6 1.8 2

x 10
4

28

30

32

34

36

38

k
1 1.2 1.4 1.6 1.8 2

x 10
4

34

36

38

40

42

44

46

k
1 1.2 1.4 1.6 1.8 2

x 10
4

36

38

40

42

44

46

48

50

k

eS
P
L
H
,
κ
+
=

1
0
0
,
κ
−
=

5
0
0
,
K

=
2
0
0
0
0

p
re
ci
si
o
n

0 20 40 60 80 100
0

10

20

30

recall
0 20 40 60 80 100

0

20

40

60

recall
0 20 40 60 80 100

0

20

40

60

recall
0 20 40 60 80 100

0

20

40

60

ker−MACcut
lin−MACcut
ker−MACquad
lin−MACquad
ker−cut
lin−cut
ker−quad
lin−quad

recall

Figure 6: Like fig. 3 but on SIFT1M dataset, for the KSH (top panel) and eSPLH (bottom panel) loss
functions. The rows show the value of the loss function L, the precision (for a number of retrieved points k)
and the precision/recall (at different Hamming distances), using b = 8 to 32 bits.

14

KSH eSPLH

O
b
je
ct
iv
e
fu
n
ct
io
n
va
lu
e

8 16 24 32
2.4

2.5

2.6

2.7x 10
6

ker−MACcut
lin−MACcut
ker−cut
lin−cut
free codes

b
8 16 24 32

2.56

2.58

2.6

2.62

2.64

2.66

2.68
x 10

6

b

Figure 7: Like fig. 6 for the SIFT1M dataset, but showing the value of the error function E(Z) for the “free”
binary codes, and for the codes produced by the hash functions learned by cut (the two-step method) and
MACcut, with linear and kernel hash functions.

15

b = 8 b = 16 b = 24 b = 32

p
re
ci
si
o
n

1 1.2 1.4 1.6 1.8 2
x 10

4

20

21

22

23

24

25

k
1 1.2 1.4 1.6 1.8 2

x 10
4

30

32

34

36

38

40

MACcut
MACquad
cut
quad
KSH
BRE
STH

k
1 1.2 1.4 1.6 1.8 2

x 10
4

35

40

45

k
1 1.2 1.4 1.6 1.8 2

x 10
4

40

45

50

k

S
IF

T
1
M

(u
si
n
g
d
is
ta
n
ce
-b
a
se
d
p
se
u
d
o
la
b
el
s)

p
re
ci
si
o
n

20 40 60 80 100
0

10

20

30

recall
20 40 60 80 100

0

20

40

60

MACcut
MACquad
cut
quad
KSH
BRE
STH

recall
20 40 60 80 100

0

20

40

60

80

recall
20 40 60 80 100

0

20

40

60

80

recall

p
re
ci
si
o
n

1 1.2 1.4 1.6 1.8 2
x 10

4

14

16

18

20

22

24

26

k
1 1.2 1.4 1.6 1.8 2

x 10
4

25

30

35

40

k
1 1.2 1.4 1.6 1.8 2

x 10
4

30

35

40

45

k
1 1.2 1.4 1.6 1.8 2

x 10
4

30

35

40

45

50

k

S
IF

T
1
M

(u
n
su
p
er
v
is
ed
,
n
o
la
b
el
s)

p
re
ci
si
o
n

20 40 60 80 100
0

10

20

30

recall
20 40 60 80 100

0

20

40

60

MACcut
cut
BA
ITQ
SPH
tPCA
SH
AGH

recall
20 40 60 80 100

0

20

40

60

80

recall
20 40 60 80 100

0

20

40

60

80

recall

Figure 8: Comparison with binary hashing methods on SIFT1M using pseudolabels (top panel) and without
labels (bottom panel). The rows in each panel show the precision (for a range of retrieved points k) and the
precision/recall (at different Hamming distances), using b = 8 to 32 bits.

16

b = 8 b = 16 b = 24 b = 32

p
re
ci
si
o
n

1 1.2 1.4 1.6 1.8 2
x 10

4

20

21

22

23

24

25

k
1 1.2 1.4 1.6 1.8 2

x 10
4

30

32

34

36

38

MACcut
MACquad
cut
quad
KSH
BRE
STH

k
1 1.2 1.4 1.6 1.8 2

x 10
4

34

36

38

40

42

44

46

k
1 1.2 1.4 1.6 1.8 2

x 10
4

40

45

50

k

S
IF

T
1
M

(u
si
n
g
d
is
ta
n
ce
-b
a
se
d
p
se
u
d
o
la
b
el
s)

p
re
ci
si
o
n

20 40 60 80 100
0

10

20

30

recall
20 40 60 80 100

0

20

40

60

MACcut
MACquad
cut
quad
KSH
BRE
STH

recall
20 40 60 80 100

0

20

40

60

80

recall
20 40 60 80 100

0

20

40

60

80

recall

p
re
ci
si
o
n

1 1.2 1.4 1.6 1.8 2
x 10

4

14

16

18

20

22

24

26

k
1 1.2 1.4 1.6 1.8 2

x 10
4

25

30

35

40

MACcut
cut
BA
ITQ
SPH
tPCA
SH
AGH

k
1 1.2 1.4 1.6 1.8 2

x 10
4

30

35

40

45

50

k
1 1.2 1.4 1.6 1.8 2

x 10
4

30

35

40

45

50

55

k

S
IF

T
1
M

(u
n
su
p
er
v
is
ed
,
n
o
la
b
el
s)

p
re
ci
si
o
n

20 40 60 80 100
0

10

20

30

recall
20 40 60 80 100

0

20

40

60

MACcut
cut
BA
ITQ
SPH
tPCA
SH
AGH

recall
20 40 60 80 100

0

20

40

60

80

recall
20 40 60 80 100

0

20

40

60

80

recall

Figure 9: As in fig. 8 but using the cosine similarity instead of the Euclidean distance to find neighbors (i.e.,
all the points are centered and normalized before training and testing), on SIFT1M.

17

References

[1] Y. Boykov and V. Kolmogorov. Computing geodesics and minimal surfaces via graph cuts. In Proc. 9th
Int. Conf. Computer Vision (ICCV’03), pages 26–33, Nice, France, Oct. 14–17 2003.

[2] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy
minimization in vision. IEEE Trans. Pattern Analysis and Machine Intelligence, 26(9):1124–1137, Sept.
2004.

[3] M. Á. Carreira-Perpiñán and R. Raziperchikolaei. Hashing with binary autoencoders. In Proc. of
the 2015 IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR’15), pages
557–566, Boston, MA, June 7–12 2015.

[4] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A Procrustean approach
to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Analysis and Machine
Intelligence, 35(12):2916–2929, Dec. 2013.

[5] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon. Spherical hashing. In Proc. of the 2012
IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR’12), pages 2957–2964,
Providence, RI, June 16–21 2012.

[6] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE Trans.
Pattern Analysis and Machine Intelligence, 33(1):117–128, Jan. 2011.

[7] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? IEEE Trans.
Pattern Analysis and Machine Intelligence, 26(2):147–159, Feb. 2003.

[8] G. Lin, C. Shen, D. Suter, and A. van den Hengel. A general two-step approach to learning-based
hashing. In Proc. 14th Int. Conf. Computer Vision (ICCV’13), pages 2552–2559, Sydney, Australia,
Dec. 1–8 2013.

[9] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter. Fast supervised hashing with decision trees
for high-dimensional data. In Proc. of the 2014 IEEE Computer Society Conf. Computer Vision and
Pattern Recognition (CVPR’14), pages 1971–1978, Columbus, OH, June 23–28 2014.

[10] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs. In L. Getoor and T. Scheffer,
editors, Proc. of the 28th Int. Conf. Machine Learning (ICML 2011), pages 1–8, Bellevue, WA, June 28
– July 2 2011.

[11] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research and
Financial Engineering. Springer-Verlag, New York, second edition, 2006.

[12] R. Raziperchikolaei and M. Á. Carreira-Perpiñán. Optimizing affinity-based binary hashing using aux-
iliary coordinates. In Advances in Neural Information Processing Systems (NIPS), volume 29. MIT
Press, Cambridge, MA, 2016.

[13] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In D. Koller, Y. Bengio, D. Schuurmans, L. Bot-
tou, and A. Culotta, editors, Advances in Neural Information Processing Systems (NIPS), volume 21,
pages 1753–1760. MIT Press, Cambridge, MA, 2009.

[14] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-BFGS-B: FORTRAN subroutines for
large-scale bound-constrained optimization. ACM Trans. Mathematical Software, 23(4):550–560, Dec.
1997.

18

	Theoretical results
	Summary of results
	Notation and preliminaries
	Algorithm-free characterization of the optima path
	Algorithm-based characterization of the optima path

	Stopping criterion, schedule over and path of optimal values
	Z step of the MAC algorithm
	Solution using a quadratic surrogate method Lin13a
	Solution using a GraphCut algorithm Lin14b

	Experiments
	Supervised datasets
	Unsupervised dataset

