
OPTIMIZING AFFINITY-BASED BINARY HASHING USING AUXILIARY COORDINATES
Ramin Raziperchikolaei and Miguel Á. Carreira-Perpiñán, EECS, UC Merced

1 Abstract
Binary hashing is a well-known approach for fast approximate nearest-neighbor

search in information retrieval. Much work has focused on affinity-based ob-

jective functions. This typically results in a difficult nonconvex and nonsmooth

optimization problem. Much work has simply relaxed the problem, solving a

continuous optimization, and truncating the codes, or first optimized the objec-

tive over the binary codes and then learned the hash function a posteriori. Both

approaches are suboptimal. We propose a general framework that optimizes

affinity-based objective jointly over the hash functions and the binary codes so

that they gradually match each other. Our optimization is guaranteed to obtain

better hash functions while being not much slower. In addition, our framework

facilitates the design of optimization algorithms for arbitrary types of loss and

hash functions. Work supported by NSF award IIS–1423515

2 Binary hash functions for fast image retrieval

In K nearest neighbors problem, there are N training points in D-dimensional

space (usually D > 100) xi ∈ R
D, i = 1, . . . ,N. The goal is to find the K near-

est neighbors of a query point xq ∈ R
D. Exact search in the original space is

O(ND) in time and space.

A binary hash function h takes as input a high-

dimensional vector x ∈ R
D and maps it to an

b-bit vector z = h(x) ∈ {0, 1}b.

The main goal is preserving the neighborhood,

i.e., assign (dis)similar codes to (dis)similar

patterns.

In supervised hashing, we try to preserve tshe

semantic similarity between the images (e.g.

images from different view points are similar,

while they are far in the Euclidean space).

1 1

1 11

1 111

00 00

000

0 0

Image Codes

h(·)

h(·)

h(·)

Finding K nearest neighbors in Ham-

ming space needs O(Nb) in time and

space. Distances can be computed ef-

ficiently using hardware operations.

N = 109, D = 500 and b = 64

Search in Space Time

Original space 2 TB 1 hour

Hamming space 8 GB 10 seconds

3 Affinity-based objective functions

Most hashing papers try to minimize an affinity-based objective function, which

directly tries to preserve the original similarities in the binary space:

minL(h) =
∑N

n,m=1 L(h(xn),h(xm); ynm) (1)

where xi ∈ R
D is the i th input data, h is the parameters of the hash function,

L(·) is a loss function that compares the codes for two images with the ground-

truth value ynm that measures the affinity in the original space between the two

images xn and xm. Many such loss functions L(zn, zm; ynm) exist, e.g.:

KSH: (zT
n zm−bynm)

2 Laplacian: (ynm ‖zn − zm‖
2) BRE: (1

b
‖zn − zm‖

2 − ynm)
2

4 Optimization-based approaches
Optimizing L(h) is difficult because h is discrete. Many optimization algo-

rithms have been considered in the binary hashing literature:

•Relaxation (Liu et al., 2012): relax the step function or binary codes

(ignore the binary nature of the problem), optimize the objective

continuously, and truncate the results.

•Two-step methods (Lin et.al., 2013, 2014): in the first step, define the

objective over binary codes, optimize it approximately and learn the codes,

and in the second step, fit the hash function given the codes.

Limitations of optimization-based methods:

•The hash function outputs binary values, hence the problem is nonconvex

and nonsmooth. The underlying problem of finding the binary codes for

the points is an NP-complete optimization over Nb variables.

•Most methods do not scale beyond a few thousand training points.

•The b single-bit hash functions are coupled (to avoid trivial solutions

where all codes are the same).

• In the end, there is little practical difference between the different objective

functions and optimization algorithms proposed.

5 Optimization using the method of auxiliary coordinates
We show how to optimize the objective in eq. (1) correctly by preserving the

binary constraints and considering all elements of the problem.

We use the method of auxiliary coordinates (MAC) (Carreira-Perpiñán and

Wang, 2004), a generic approach to optimize nested functions. Our proposed

method has three main steps:

1. we introduce auxiliary coordinates zn ∈ {−1,+1}b as the output of h(xn)
and convert the problem for L(h) into an equivalent constrained problem:

Lc(h,Z) =
∑N

n,m=1 L(zn, zm; ynm) s.t. z1 = h(x1), · · · , zN = h(xN)

2. Now we apply the quadratic-penalty method:

LP(h,Z;µ) =
∑N

n,m=1 L(zn, zm; ynm) + µ
∑N

n=1 ‖zn − h(xn)‖
2

where z1, . . . , zN ∈ {−1,+1}b. We start with a small µ and increase it

slowly.

3. To optimize LP(h,Z;µ), we apply alternating optimization:

•Optimization over h given Z: minh

∑N
n=1 ‖zn − h(xn)‖

2. This is equivalent

to training b binary classifiers with data (X,Z).

•Optimization over Z given h: this is an NP-complete problem over Nb

binary variables. We apply alternating optimization over the i th bit of

points given the rest are fixed. This gives a binary quadratic problem.

If we optimize the objective LP for µ → 0+, we get an algorithm that first

optimizes the codes and then fits the hash function a posteriori. MAC starts

from the results of this algorithm (two-step methods).

6 Experiments: why does MAC learn better codes and hash functions?

{−1,+1}b×N

free binary

codes

codes from optimal

hash function

codes realizable

by hash functions

two-step codes

This figure shows the space of all possible

binary codes and the feasible set for linear

hash functions. The contours correspond

to Lc defined only on codes.

The two-step method projects the free

codes into the feasible set.

MAC optimizes the codes and functions

jointly to find a better local optima.

lo
s
s

fu
n
c
ti
o
n
L

16 32 48

4

4.5

5

5.5
x 10

6

 

 

ker-MACcut

lin-MACcut

ker-cut

lin-cut

free codes

number of bits b

We compare the codes of cut with MACcut,

in CIFAR dataset. We achieve free codes

by minimizing Lc over the binary codes Z
without any constraint. Free codes are the

starting point of both cut and MACcut. Free

codes always achieve lower error than the

cut and MACcut.

MAC achieves lower error than the cut us-

ing both linear and kernel hash function

and using different loss functions.

“cut” (Lin et al., 2014) and “quad” (Lin et al., 2013) are two-step methods that first learn

the binary codes and then train the hash function on them. They optimize the binary

codes using a quadratic surrogate and a GraphCut method, respectively.

MAC uses cut (MACcut) or quad (MACquad) to learn the codes in the Z-step.

MAC achieves lower error and better retrieval results using different types of hash

functions and loss functions, in different datasets.

lo
s
s

fu
n
c
ti
o
n
L

2 4 6 8 10 12 14

5.2

5.4

5.6

5.8
x 10

6

 

 

ker-MACcut
lin-MACcut
ker-MACquad
lin-MACquad
ker-cut
lin-cut
ker-quad
lin-quad
ker-KSH

iterations

p
re

c
is

io
n

600 700 800 900 1000
30

35

40

45

48

k retrieved points

We compare MAC with cut and quad on CIFAR

dataset using b = 48 bits. MAC finds hash

functions with significantly lower objective func-

tion values than the previous approaches. It

also achieves better precision.

7 Theoretical results
We can prove the following under the assumption that the Z and h
steps are exact:

1. The MAC algorithm stops after a finite number of iterations, when

Z = h(X) in the Z step, since then the constraints are satisfied

and no more changes will occur to Z or h.

2. The path over the continuous penalty parameter µ ∈ [0,∞) is in

fact discrete: the minimizer (h,Z) of LP for µ ∈ [0, µ1] is identical

to the minimizer for µ = 0, and the minimizer for µ ∈ [µ2,∞) is

identical to the minimizer for µ → ∞, where 0 < µ1 < µ2 < ∞.

Besides, the interval [µ1, µ2] is itself partitioned in a finite set of

intervals and the minimizer changes only at interval boundaries.

8 Conclusion

•MAC optimizes the desired objective in eq. (1) by respecting the

binary nature of the codes. It transforms the original problem into a

problem over codes and the hash function, and optimizes it jointly

over all the parameters and finds better local optima.

•MAC performs better than the previous methods in both optimization

and information retrieval measures.

•Our framework makes it easy to design an optimization algorithm for

a new choice of loss function or hash function.

•See also Independent Laplacian Hashing (NIPS 2016) which uses

ensemble diversity approach to learn the single-bit hash functions

independently. This makes the optimization faster and simpler.


