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Abstract

This is supplementary material for the “main paper” [3]. We provide the following. 1) A proof for
the statements in the main paper (section 2, p. 3) regarding the equivalence of objective functions in
the single-bit case. 2) A proof for the statements in the main paper (section 3, p. 6) regarding the
orthogonality measure for binary code vectors or hash function weight vectors. 3) Extended experi-
ments (figures 1–4) with additional hash functions, datasets and numbers of bits b, and comparing with
additional binary hashing methods.

1 Equivalence of objective functions in the single-bit case: proofs

In the main paper (section 2), we state that, in the single bit case (b = 1), the Laplacian, KSH and BRE
loss functions over the vector z of binary codes for each data point can be written in the form of a binary
quadratic function without linear term (or a MRF with quadratic potentials only):

min
z

E(z) = zTAz with z ∈ {−1,+1}N (1)

with an appropriate, data-dependent neighborhood symmetric matrix A of N ×N . We can assume w.l.o.g.
that ann = 0, i.e., the diagonal elements of A are zero, since any diagonal values simply add a constant to
E(z).

More generally, consider an arbitrary objective function of a binary vector z ∈ {−1,+1}N that has the

form E(z) =
∑N

n,m=1
fnm(zn, zm) and which only depends on Hamming distances between bits zn, zm. This

is the form of the affinity-based loss function used in many binary hashing papers, in the single-bit case.
Each term of the function E(z) can be written as fnm(zn, zm) = anmznzm + bnm. This fact, already noted
by Lin et al. [6], is because a function of 2 binary variables f(x, y) can take 4 different values:

x y f
1 1 a
−1 1 b
1 −1 c
−1 −1 d

but if f(x, y) only depends on the Hamming distance of x and y then we have a = d and b = c. This can be
achieved by f(x, y) = 1

2
(a− b)xy + 1

2
(a+ b), and the constant 1

2
(a+ b) can be ignored when optimizing.

By a similar argument we can prove that an arbitrary function of 3 binary variables that depends only
on their Hamming distances can be written as a quadratic function of the 3 variables.

However, this is not true in general. This can be seen by comparing the dimensions of the function spaces
spanned by the arbitrary function and the quadratic function. Consider first a general quadratic function
E(z) = 1

2
zTAz+ bT z+ c of N binary variables z ∈ {−1,+1}N . We can always take A symmetric (because

zTAz = zT
(

A+A
T

2

)

z) and absorb its diagonal terms into the constant c (because z2n = 1), so we can write
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w.l.o.g. E(z) =
∑N

n<m anmznzm +
∑N

n=1
bnzn + c. This has (n2 + n + 2)/2 free parameters. The vector of

2n possible values of E for all possible binary vectors z is a linear function of these free parameters, Hence,
the dimension of the space of all quadratic functions is at most (n2 + n+ 2)/2. Consider now an arbitrary
function of b binary variables that depends only on their Hamming distances. Although there are n(n− 1)/2
Hamming distances d(zn, zm), they are all determined just by the n − 1 first distances d(z1, zn) for n > 1.
This is because, given z1, the distance d(z1, zn) determines zn for each n > 1 and so the entire vector z

and all the other distances. Also, given the distances d(z1, zn) for n > 1, the value z1 = −1 produces a
vector z whose bits are reversed from that produced by z1 = +1, so both have the same Hamming distances.
Hence, we have n− 1 free binary variables (the values of d(z1, zn) for n > 1), which determine the vector of
2n possible values of E for all possible binary vectors z. Hence, the dimension of the space of all arbitrary
functions of Hamming distances is 2n−1. Since 2n−1 > (n2 + n + 2)/2 for n > 5, the quadratic functions
in general cannot represent all arbitrary binary functions of the Hamming distances using the same binary
variables.

Finally, note that some objective functions which make sense in the b-bit case with b > 1 become trivial
in the single-bit case. For example, the loss function for Minimal Loss Hashing [7]:

LMLH(zn, zm; ynm) =

{

max(‖zn − zm‖ − ρ+ 1, 0), ynm = 1

λmax(ρ− ‖zn − zm‖+ 1, 0), ynm = 0

uses a hinge loss to implement the goal that similar points (having ynm = 1) should differ by no more than
ρ − 1 bits and dissimilar points (having ynm = 0) should differ by ρ + 1 bits or more, where ρ ≥ 1, λ > 0,
and ‖zn − zm‖ is the Hamming distance between zn and zm. It is easy to see that in the single-bit case the
loss LMLH(zn, zm; ynm) becomes constant, independent of the codes—because using one bit the Hamming
distance can be either 0 or 1 only.

2 Orthogonality measure: proofs

In paragraphAre the codes orthogonal? of the main paper, we define a measure of orthogonality for either
the binary codes ZN×b or the hash function weight vectors Wb×D, based on the b× b matrices of normalized
dot products, CZ = 1

N
ZTZ and CW = WWT (where the rows of W are normalized), respectively. Here

we prove several statements we make in that paragraph.

Invariance to sign reversals Given a matrix C of b× b (either CZ or CW) with entries in [−1, 1], define
as measure of orthogonality (where ‖·‖F is the Frobenius norm):

⊥(C) =
1

L(L− 1)
‖I−C‖2F ∈ [0, 1]. (2)

That is, ⊥(C) is the average of the squared off-diagonal elements of C.

Theorem 2.1. ⊥(C) is independent of sign reversals of the hash functions.

Proof. Let S be a b× b diagonal matrix with diagonal entries sii ∈ {−1,+1}. S satisfies STS = S2 = I so it

is orthogonal. Hence, ‖I− SCS‖
2

F = ‖S(I−C)S‖
2

F = ‖I−C‖
2

F .

Distribution of the dot products of random vectors As control hypothesis for the orthogonality of
the binary codes or hash function vectors we used the distribution of dot products of random vectors. Here
we give their mean and variance explicitly as a function of their dimension.

Theorem 2.2. Let x,y ∈ {−1,+1}d be two random binary vectors of independent components, where

x1, . . . , xd, y1, . . . , yd take the value +1 with probability 1

2
. Let z = 1

d
xTy = 1

d

∑d

i=1
xiyi. Then E {z} = 0

and var {z} = 1

d
.

Proof. Let zi = xiyi ∈ {−1,+1}. Clearly, zi takes the value +1 with probability 1

2
, so its mean is 0 and

its variance is 1, and z1, . . . , zd are iid. Hence, using standard properties of the expectation and variance,
we have that E {z} = 1

d

∑d

i=1
E {zi} = 0, and var {z} = 1

d2

∑d

i=1
var {zi} = 1

d
. (Furthermore, 1

2
(zi + 1) is

Bernoulli and d
2
(z + 1) is binomial.)
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It is also possible to prove that, for random unit vectors of dimension d with real components, their dot
product has mean 0 and variance 1

d
.

Hence, as the dimension d increases, the variance decreases, and the distribution of z tends to a delta at
0. This means that random high-dimensional vectors are practically orthogonal. The “random” histograms
(black line) in fig. 3 are based on a sample of b random vectors (for W, we sample the component of each
weight vector uniformly in [−1, 1] and then normalize the vector). They follow the theoretical distribution
well.

3 Additional experiments

We show results for an additional hash function and dataset for figures 1 and 2 of the main paper. We also
add complete results (using b = 32 to 200 bits) for all datasets to the figures 3 and 4 in the main paper, as
shown below. The conclusions are as in the main paper:

• Fig. 1: In the paper, we compared ILH diversity mechanisms and their combination with the baseline
KSHcut using linear and kernel hash functions, where all the kernel hash functions used the same,
common 500 centers for radial basis functions. Here, we compare all the methods using kernel hash
functions where each function uses its own 500 centers. Similar to the main paper, diversity meth-
ods perform better than (or as good as) the baseline KSHcut and ILHt is clearly the best diversity
mechanism, performing much better than KSHcut.

• Fig. 2: We show the results for an additional dataset (CIFAR). Results are similar to the main paper:
the highest precision is achieved with a proportion d/D ≈ 50% for ILHf and with d = D for ILHitf,
random sampling performs better than bootstrapped sampling for ILHt, and the precision of ILHt
continues to increase with the number of bits b, greatly exceeding that of KSHcut.

• Fig. 3: the binary codes ZN×b = (z1, . . . , zb) have a wide distribution of dot products. This distribution
has some tendency to orthogonality, but it is far from strict orthogonality, or from the distribution of
dot products of random vectors, and it seems independent of the number of bits b used.
As for the hash function weight vectorsWb×D = (w1, . . . ,wb)

T , their distribution of dot products has a
stronger tendency to orthogonality, which seems to increase with the number of bits b. Hence, although
the hash function weight vectors tend to show more orthogonality than the binary code vectors, this
is still far from the strict orthogonality demanded by some binary hashing algorithms.

• Fig. 4: ILHt beats all other state-of-the-art methods, or is comparable to the best of them, in different
datasets and using different number of bits.

In fig. 5 we also include results for an additional, unsupervised dataset, the Flickr 1 million image dataset
[5]. For Flickr, we randomly select 2 000 images for test and the rest for training. We use D = 150 MPEG-7
edge histogram features. Since no labels are available, we create pseudolabels ynm for xn by declaring as
similar points its 100 true nearest neighbors (using the Euclidean distance) and as dissimilar points a random
subset of 100 points among the remaining points. As ground truth, we use the K = 10 000 nearest neighbors
of the query in Euclidean space. All hash functions are trained using 5 000 points. Retrieved set: k nearest
neighbors of the query point in the Hamming space, for a range of k.

The only important difference is that Locality-Sensitive Hashing (LSH) achieves a high precision in the
Flickr dataset, considerably higher than that of KSHcut. This is understandable, for the following reasons:
1) Flickr is an unsupervised dataset, and the neighborhood information provided to KSHcut (and ILHt) in
the form of affinities is limited to the small subset of positive and negative neighbors ynm, while LSH has
access to the full feature vector of every image. 2) The dimensionality of the Flickr feature vectors is quite
small: D = 150. Still, ILHt beats LSH by a significant margin.

In addition to the methods we used in the supervised datasets, we compare ILHt with Spectral Hashing
(SH) [8], Iterative Quantization (ITQ) [4], Binary Autoencoder (BA) [2], thresholded PCA (tPCA), and
Locality-Sensitive Hashing (LSH) [1]. Again, ILHt beats all other state-of-the-art methods, or is comparable
to the best of them, particularly as the number of bits b increases.
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Figure 1: Extended fig. 1 in the main paper, adding results for a new hash function. Comparing diversity
mechanisms and baseline KSHcut using kernel hash functions. Each hash function has its own 500 centers
for the radial basis functions. Precision on CIFAR dataset, as a function of the training set size N (2,000
to 20 000) and number of bits b (32 to 128).
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Figure 2: Extended fig. 2 in the main paper, adding results for a new dataset. All results show precision
using a training set of N = 5 000 points of CIFAR dataset. Errorbars over 5 random training sets. Ground
truth: all points with the same label as the query. Retrieved set: k = 500 nearest neighbors of the query.
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Figure 3: Extended fig. 3 in the main paper, adding results for more datasets and for b = 200 bits, for both
orthogonality of the codes (CZ matrix) and of the hash function weight vectors (CW matrix). Both matrices
CZ and CW are of b× b where b is the number of bits (i.e., the number of hash functions).
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Figure 4: Extended fig. 4 in the main paper, adding results for b = 32 and 200 bits in the comparison with
different binary hashing methods in precision and precision/recall, using linear SVMs as hash functions.
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Figure 5: Results for the Flickr dataset (unsupervised). The top, middle and bottom panels correspond to
figures 2, 3 and 4 in the main paper. Ground truth: the first K = 10 000 nearest neighbors of the query in
the original space. Retrieved set: k = 10 000 nearest neighbors of the query.
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