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Abstract—AutoRec and neural collaborative filtering (NCF)
are two widely used neural network-based frameworks in the
recommendation system literature. In this paper, we show that
these two apparently very different frameworks have a lot in
common. We propose a general neural network-based frame-
work, which gives us flexibility in choosing elements in the input
sources, prediction functions, etc. Then, we show that AutoRec
and NCF are special forms of our generalized framework. In
our experimental results, first, we compare different variants of
NCF and Autorec. Then, we indicate that it is necessary to use
our general framework since there is no specific structure that
performs well in all datasets. Finally, we show that by choosing
the right elements, our framework outperforms the state-of-the-
art methods with complicated structures.

Index Terms—Collaborative filtering, autoencoders

I. INTRODUCTION

Neural networks have been playing an important part in the
recommendation system papers recently [1, 2, 3, 4, 5, 6, 7].
They have been used to extract user and item representations
and to model the complicated relationship between them. The
two widely used structures are autoencoders [8] and neural
collaborative filtering (NCF) [4, 5, 6, 7].

The first autoencoder-based recommendation system, known
as AutoRec, was proposed in [8]. In AutoRec, the autoencoder
tries to reconstruct the user (or item) interaction vector in train-
ing. At the test time, the reconstructed values are considered as
the prediction of the unknown values of the interaction vector.

Neural collaborative filtering (NCF) was proposed in [4] to
improve the performance of the matrix factorization (MF). The
idea is to use neural networks, instead of the dot product, to
convert the user and item representations to their interaction
value.

Several variants of Autorec [9, 10, 11, 12] and NCF [5,
6, 7] have been proposed to improve the performance using
different architectures, inputs, loss functions, and regularizers.
However, there is no systematic comparison between them. In
other words, it’s not clear what makes one structure perform
better than the other one in different datasets.

In this paper, we propose a general framework that unifies
variants of NCF and AutoRec. This framework enables us to

conduct systematic comparison of the state-of-the-art struc-
tures, to identify the effect of the changes in the framework,
and to shed a light on directions for novel variants of this
family of methods. Our contributions are as follows:
• We propose a general framework for neural network-

based collaborative filtering (Section III). As shown in
Figure 1, our framework consists of three modules: 1) the
representation learning module, 2) the fusion module, and
3) the prediction module. By modularizing the RS model,
our framework allows the flexible choice (tuning) for each
module to find the best model for given applications.

• We show that AutoRec and NCF, two major neural
network-based CF architectures that seems very different
at first glance, are the special cases of this framework
(Section IV and V). With this, we demonstrate in Table
I that their variants can be categorized under our frame-
work by choosing different elements in each module.

• We investigate the impact of different modules in our
structure, such as inputs and loss functions, on recom-
mendation tasks using three datasets (Section VI). The
results reveal that no specific structure performs best in
all the datasets, which shows the necessity of using our
general framework to select the best module based on
the final tasks. The results also show that our framework
outperforms SOTA thanks to the flexibility in choosing
the elements.

II. RELATED WORKS

In matrix factorization (MF), the dot product is used to
model the interaction between the users and items from their
embeddings. Neural collaborative filtering (NCF) [4] is pro-
posed to improve the performance of the MF by replacing the
dot product by more complicated functions. In [4], GMF and
MLP were proposed as two models from the NCF framework.
In GMF [4], a nonlinear layer takes the element-wise product
of the user and item embeddings and predicts their interaction
value. In MLP [4], an MLP takes the concatenation of the user
and item embeddings and predicts their interaction value. In
[5], CFNet-rl and CFNet-ml were proposed, which are very
similar to the GMF and MLP in [4]. The only difference is
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Fig. 1. Our general framework. MF, NCF, and AutoRec are a special form
of this structure.

that CFNet uses interaction vector and MLPs to extract user
and item representations, while [4] uses embedding layers. In
[6], MLPs are used to extract user and item representations
and their cosine similarity is used to predict the interactions.

AutoRec[8] is the first autoencoder-based recommendation
method. The idea is to reconstruct the interaction vectors and
use the reconstructed values as the predicted interactions. In
[9], the side information is added to the AutoRec structure.
In [10], the AutoRec structure is used for implicit feedback
prediction. In [11], the user reviews and attention mechanism
are used to improve the prediction performance. In [12],
a denoising autoencoder is proposed which is capable of
eliminating the overfitting towards identity. There are many
other works that use autoencoders in recommendation systems
[9, 13, 14, 15, 16, 17].

III. OUR GENERAL FRAMEWORK

Let us introduce the notations first. We denote the sparse
interaction matrix by R ∈ Rm×n, where m and n are the
number of users and items, respectively, Rjk > 0 is the
interaction value of the user j on the item k, and Rjk = 0
means the interaction is unknown. The goal is to predict the
unknown interactions in R. The ith row of a matrix H is
shown by Hi,: and the jth column is shown by H:,j .

In Fig. 1, we show the structure of our framework, which
contains two inputs, three modules, and a loss function. The

user and item representation learning modules take the user
and item inputs and generate user and item representations,
respectively. The fusion module combines the user and item
representations and generates the joint representation. Finally,
the prediction module takes the joint representation and pre-
dicts the interaction value. In the rest of this section, we will
explain the task of each module of this framework in more
details.

A. Input layer
ID [4, 7, 18] and interaction vector [5, 6, 15, 17] are the two

widely used inputs in the recommendation system literature:
• In case of ID as the input, each user j is represented

by an m-dimensional vector Iuj , which is 0 everywhere
except in the jth index, which is 1. We define the kth
item’s input vector in the same way and denote it by Iik,
which is n-dimensional.

• In case of the interaction vector as the input, the jth row
and the kth column of the interaction matrix are the jth
user and kth item input vectors, which are denoted by
Rj,: and (R:,k)

T , respectively.

B. Representation learning module
The two widely used learning modules are embedding layers

[4, 7, 18] and multi-layer perceptrons (MLPs) [5, 6], which
are explained in the following:
• Embedding layers are used to generate representations

from user and item IDs. Let us denote the user embed-
ding matrix as Eu ∈ Rm×d. Then the d-dimensional
representation of the jth user is defined as zuj = IujE

u,
which gives us the jth rows of the embedding matrix. In
the same way, we define the item embedding matrix as
Ei ∈ Rn×d and the the d-dimensional item representation
of the kth item as zik.

• MLPs are used to generate representations from user and
item interactions. For the jth user, a user MLP gu() takes
the interaction vector of the jth user and generates the
du-dimensional user representation zuj = gu(Rj,:). In the
same way, the di-dimensional representation of the kth
item is defined as zik = gi((R:,k)

T ).

C. Fusion module
This module takes the du dimensional representation of

the jth user (zuj ) and di dimensional representation of the
kth item (zik), and generates a d dimensional joint user
and item representation, denoted by zjk. Concatenation and
element-wise product are two popular ways to combine the
representations [4, 5]. In the case of element-wise product,
the assumption is that the user and item representations have
the same dimension, i.e. du = di.

D. Prediction module
Prediction module takes the joint representation zjk and

outputs the predicted interaction value R̂jk of the user j on
item k, i.e., R̂jk = h(zjk). MLPs can be used as the function
h() to model the complicated relations between users and
items.



TABLE I
HOW TO SET THE INPUT LAYERS, MODULES, AND LOSS FUNCTIONS IN OUR FRAMEWORK TO ACHIEVE DIFFERENT NCF-BASED AND AUTOREC-BASED

MODELS. U-INPUT AND U-REP REFER TO USER INPUT AND USER REPRESENTATION, I-INP AND I-REP REFER TO ITEM INPUT AND ITEM REPRESENTATION,
E-W REFERS TO ELEMENT-WISE PRODUCT, AND NON-LIN REFERS TO ONE NONLINEAR LAYER.

methods/modules u-input u-rep learning i-input i-rep learning fusion prediction loss

MF ID Embedding ID Embedding e-w product linear mse

GMF [4] ID Embedding ID Embedding e-w product non-lin mse

MLP [4] ID Embedding ID Embedding concatenation MLPs mse

CFNet-rl [5] interaction MLPs interaction MLPs e-w product non-lin BCE

CFNet-ml [5] interaction linear interaction linear concatenation MLPs BCE

DMF [6] interaction MLPs interaction MLPs normalized e-w product linear normalized BCE

ONCF [7] ID Embedding ID Embedding outer-product CNNs BPR[19]

U-AutoRec [8] ID Embedding interaction MLPs e-w product non-lin mse

I-AutoRec [8] interaction MLPs ID Embedding e-w product non-lin mse

a) Dot product in our framework.: Dot product has been
used frequently in the literature to model the relationship
between the users and items [6, 13, 15, 18, 19]. In our
framework, we can achieve the dot product by using the
element-wise product as the fusion module and a linear layer
as the prediction module.

E. Loss function

Various loss functions, including Mean squared error (MSE)
and Binary cross entropy loss (BCE), have been used in the
literature. Let us assume the training set T contains a set of
pairs of users and items and their interaction values, then two
popular loss functions are defined as:

lmse =
∑
j,k∈T

(R̂jk −Rjk)
2

lBCE =
∑
j,k∈T

Rjk log(R̂jk) + (1−Rjk) log(1− R̂jk). (1)

The lmse can be used with both explicit and implicit inter-
actions [4, 6, 15], while the lBCE is mainly used with the
implicit interactions [5, 20].

Let us discuss how the training set is created when the
interactions are explicit and implicit. In the case of explicit
interactions, the training set T contains all the pairs of the
users and items with the known interactions. In the implicit
interaction prediction, all the known interactions are 1, so
training on them will lead to converging to the trivial solution
of always returning 1. To prevent converging to this solution,
in addition to all the pairs with the known interactions, the
set T also contains a subset of the pairs with the unknown
interaction with value 0.

IV. NCF UNDER OUR FRAMEWORK

Neural Collaborative Filtering framework utilizes neural
networks, instead of the dot product in MF, to model the
relationship between the users and items. By selecting different
inputs, modules, and loss functions, we can achieve the

different NCF models proposed in the previous works, such as
GMF [4], MLP [4] , CFNet-rl [5], CFNet-ml [5], and ONCF
[7]. Table I contains some of these models.

V. AUTOREC UNDER OUR FRAMEWORK

One of the main contributions of this paper is to show
that AutoRec’s framework is very similar to the NCF frame-
work. The objective function of the user-based AutoRec (U-
AutoRec) is:

n∑
j=1

||Rj,: − R̂j,:||2O, s.t. R̂j,: = qd(qe(Rj,:)) (2)

where qe() is the encoder that maps the interaction vector to
the low-dimensional representation, and qd() is the decoder
that reconstructs the interaction vector. || · ||2O computes the
norm over the known ratings and ignores the unknown ones.

The encoder and decoder both have a set of fully connected
layers. We expand the decoder, assuming it has L layers, as
follows:

R̂j,: = qd(qe(Rj,:)) =

σ(. . . σ(σ(qe(Rj,:)W
1)W2) . . .WL) (3)

where W1, . . . ,WL are the weights (parameters) of the
decoder. For the better analysis, let us denote the output of
the (L − 1)th layer of the decoder by zuj ∈ Rd . We can
rewrite the Eq. (3) as:

R̂j,: = qd(qe(Rj,:)) = σ(zujW
L), s.t. (4)

zuj = σ(. . . σ(σ(qe(Rj,:)W
1)W2) . . .WL−1).

The size of the matrix WL is d by m, i.e., it has a d-
dimensional vector for each of the m items. So the dimension
of the WL is identical to the item embedding matrix.



We rewrite the objective function of Eq. (2) in a format
similar to the ones in Eq. (1):

n∑
j=1

||Rj,: − R̂j,:||2O =
∑
j,k∈T

(R̂jk −Rjk)
2 s.t.

R̂jk = σ(zuj (z
i
k)

T ) zik = WL
:,k,

zuj = σ(. . . σ(σ(qe(Rj,:)W
1)W2) . . .WL−1) (5)

Recall that the training set T contains the pairs with the known
ratings. The predicted rating is the dot product (followed by
an activation) of the user and item representations. The user
representation is the output of the (L − 1)th layer of the
decoder, which is a set of fully connected layers on top of the
user interaction vector. The item representation zik is the kth
column of the item embedding matrix WL. Table I (last two
rows) shows how we should set the modules in our framework
to make it the same as AutoRec.

VI. EXPERIMENTS

a) Datasets.: For the explicit feedback prediction, we
use ml100k [21], which contains 100 000 ratings from around
1 000 users on 1 600 movies. For the implicit feedback predic-
tion, we use three datasets: 1) Last.fm1, which contains 69 149
interactions from 1 741 users on 2 665 items, 2) Amazon music
(AMusic)[22], which contains 1 700 users, 13 000 items, and
46 000 interactions, and 3) Amazon Toys (AToys)[22] , which
contains 3 137 users, 33 953 items, and 84 642 interactions.
We use the pre-processed datasets provided in [5], which is
publicly available 2.

b) Evaluation metrics.: We report the root mean square
error (RMSE) to evaluate the rating prediction performance
in the ml100k dataset. We follow [4, 5] to report Hit Ratio
(HR) and NDCG to evaluate the implicit feedback prediction
performance in the rest of the datasets.

c) Implementation details and source code.: We imple-
mented our method using Keras with TensorFlow 2 backend.
We ran all the experiments on a 32GB GPU. For each method,
we tried a range of learning rates 10−1 to 10−4 with SGD and
Adam optimizers and picked the one that works best. We used
early stopping to avoid overfitting. The source code is available
at https://raminrazi.github.io/.

A. NCF vs Autorec: why we need a general framework

In Fig. 2, we show how choosing different elements in our
framework impacts the performance. In this figure, results in
the left panel use dot product to model the interaction between
users and items (element-wise product as the fusion and linear
layer as the prediction modules). Results in the right panel use
concatenation as the fusion module and MLP as the prediction
module. The notation u-id/i-id refers to using user/item ID as
the input and user/item embedding as the rep. learning module.
The notation u-inter/i-inter refers to using user/item interaction
vector as the input and user/item MLPs as the rep. learning

1https://www.last.fm
2https://github.com/familyld/DeepCF
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Fig. 2. We compare four different combinations of the user and item inputs
and representation learning module. We report RMSE error in ml100k dataset
and HR@10 in Last.fm dataset. MF, NCF, and Autorec are instances of our
framework.

module. In all plots, the model becomes more complex (more
parameters) as we move from left to right of the x-axis.

We compare NCF and Autorec structures using the results
of the Fig. 2: the left panel contains the results of the
I-Autorec and U-Autorec, and all the curves in the right
panel (concat+MLP) are instances of NCF framework. There
are more curves corresponding to the NCF than the ones
corresponding to the Autorec because the Autorec structure
uses specific type of the inputs while NCF can use different
variants of inputs. We can also see that I-AutoRec achieves the
best results in rating prediction in ml100k while NCF performs
best in implicit feedback prediction in Last.fm dataset. So we
cannot conclude that one structure is better than the other one
in all the datasets.

To understand why neither NCF nor Autorec is always
the best choice, we should look at them as the instances
of our general framework. It is known that for any machine
learning model to perform well, no matter what the application
is, one needs to choose the right parameters, such as the
number of layers and neurons and activation functions in
a neural network. Recommendation system is no exception:
representation learning, fusion, and prediction modules are
all parameters in a recommendation system model and they
should be set carefully from one dataset to the other.

The main advantage of our framework is in separating all
the modules in a recommendation system model and letting the
user set them to the right elements based on the application. By
using our framework, one can perform systematic experiments
such as module (parameter)-tuning, and see which module
is contributing to or harming the performance in the target
dataset. After identifying the module leading to a performance
drop, we can replace its element with other ones and get the
improvement.

https://raminrazi.github.io/
https://www.last.fm
https://github.com/familyld/DeepCF


TABLE II
COMPARING OUR FRAMEWORK WITH THE CFNET [5]. OUR FRAMEWORK

ACHIEVES BETTER RESULTS THAN CFNET IN ALL THREE DATASETS.

AMusic last.fm AToy

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

CFNet 0.382 0.243 0.880 0.602 0.362 0.216

Ours 0.409 0.248 0.889 0.602 0.384 0.223

Another advantage of our framework is that by choosing the
right elements it can outperform methods with complicated
structures in the literature. In Table II, we compared the
performance of our general framework with CFNets. We run
CFNet (code is publicly available by the authors3) and our
method three times and put the average in this table.

CFNet [5] is a neural network-based method that combines
representations from two simpler models to learn two joint
user and item representations. It predict the final interaction
by a nonlinear mapping over the concatenated representations.

Our general framework has a simpler structure than CFNet
since it learns one representation per user and item and one
joint representation. But, at the same time, it’s flexible and
powerful since we can use different elements in each module.

In all three datasets, our framework uses interaction vectors
as the inputs, MLPs as the representation learning, and mse as
the loss function. In AMusic and AToy, our framework uses
dot product as the fusion function, while in last.fm it uses
MLPs. We chose the settings on a very small subset of the
dataset and a validation set.

The results show that our framework achieves better results
than CFNet in all three datasets of the Table II.

VII. CONCLUSION AND FUTURE WORKS

Neural collaborating filtering and AutoRec are two appar-
ently different neural network-based frameworks in recom-
mendation systems. NCF focuses on learning better represen-
tations for the users and items and combining them with fully
connected layers. AutoRec reconstructs the interaction vectors
to estimate the unknown ones. In this paper, we proposed a
general framework with representation learning, fusion, and
prediction modules. We showed that AutoRec and different
variants of the neural collaborative filtering are special cases
of our framework, which can be achieved by selecting specific
functions for our modules. Our experiments show that the
impact of the functions changes as we change the dataset and
the final task, i.e. one set of functions that work well in one
dataset, might not be the best option in another dataset.

As future work, we want to expand our framework to cover
the new techniques in the recommendation systems, such as
the graph neural networks. Also, we want to find the impacts
of other fusion functions and loss functions in the prediction
performance.

3https://github.com/familyld/DeepCF
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