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1 Binary hash functions for fast image retrieval

In K nearest neighbors problem, there are N training points in D-dimensional
space (usually D > 100) xi ∈ RD, i = 1, . . . , N and the goal is to find the K

nearest neighbors of a query point xq ∈ RD.

•Exact search in the original space is O(ND) in time and space.

A binary hash function h takes as input a high-dimensional vector x ∈ RD

and maps it to an L-bit vector z = h(x) ∈ {0, 1}L. The search is done in this
low-dimensional, binary space.

•The main goal is preserving the neighborhood, i.e., assign (dis)similar
codes to (dis)similar patterns.
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Finding K nearest neighbors in the Hamming space is more efficient:

•Time and space complexities would be O(NL) instead of O(ND).

•Hamming Distance can be computed efficiently and fast using hardware
operations.

Suppose that N = 109, D = 500
and L = 64

Search in Space Time
original space 2 TB 1 hour

Hamming space 8 GB 10 seconds

2 Difficulties in optimizing the objective function

Many hashing papers formulate an objective function of the hash function h

or of the binary codes.
If the hash function h was a continuous function, one could compute deriva-
tives over the parameters of h and then apply a nonlinear optimization method.

In binary hashing, optimization is much more difficult:

• the hash function must output binary values, hence the problem is not just
generally nonconvex, but also nonsmooth.

•While the gradients of the objective function do exist wrt W, they are zero
nearly everywhere.

Most hashing methods use a suboptimal,“filter” approach:

1. Relax the binary constraints and solve a continuous problem.

2. Binarize the continuous codes by finding a threshold.

3. Fit L classifiers to (patterns x,codes z) to obtain the hash function h.

This is suboptimal because optimizing real codes and then projecting them
onto the binary space is not the same as optimizing the codes in the binary
space.

We seek an optimal, “wrapper” approach: optimize the objective function
jointly over linear mappings and thresholds, respecting the binary constraints
while learning h.

3 Our hashing model: Binary Autoencoder

We consider binary autoencoders as our hashing model:

EBA(h, f) =
N
∑

n=1

‖xn − f(h(xn))‖
2

s.t. h(xn) ∈ {0, 1}L.

•The encoder h:x → z maps a real vector x ∈ RD onto a low-dimensional binary
vector z ∈ {0, 1}L (with L < D).

•The decoder f : z → x maps z back to RD in an effort to reconstruct x.

We use the method of auxiliary coordinates (MAC), a generic approach to optimize
nested functions. First, we convert the problem for EBA(h, f) into an equivalent
constrained problem:

min
h,f ,Z

N
∑

n=1

‖xn − f(zn)‖
2

s.t.
zn = h(xn) ∈ {0, 1}L

n = 1, . . . , N.

that is not nested, where zn is the auxiliary coordinate for the output of h(xn).
Now we apply the quadratic-penalty method:

EQ(h, f ,Z;µ) =
N
∑

n=1

(

‖xn − f(zn)‖
2 + µ ‖zn − h(xn)‖

2
)

s.t.
zn ∈ {0, 1}L

n = 1, . . . , N.

where we start with a small µ and increase it slowly. To optimize EQ we apply
alternating optimization:

•Over f for fixed Z:
∑N

n=1 ‖xn − f(zn)‖
2. With a linear decoder this is a straightfor-

ward linear regression with data (Z,X).

•Over h for fixed Z: minh
∑N

n=1 ‖zn − h(xn)‖
2. This separates for each bit l = 1 . . . L.

The subproblem for each bit is a binary classification problem with data (X,Z·l).

•Over Z for fixed (h, f): minzn e(zn) = ‖x− f(zn)‖
2 + µ ‖zn − h(x)‖2. This is a binary

optimization on NL variables, but it separates into N independent optimizations
each on only L variables.

Although the problem over each zn is binary and NP-complete, a good or even
exact solution may be obtained:

•For small L . 16, this can be solved exactly by Enumeration, at a worst-case
runtime cost O(L22L). We know the solution will be near h(x) which is very
helpful in accelerating the search.

•For larger L, we use alternating optimization over groups of g bits. We find in
our experiments that it finds near-global optima if using a good initialization.

Advantages of optimizing BA using MAC:

• It respects the binary constraints and optimizes the objective over binary codes
and hash function jointly.

• It introduces significant parallelism in optimization over codes and functions.

•The individual steps in alternating optimization are (reasonably) easy to solve.

Theoretical results:

Theorem 1. Assume the steps over h and f are solved exactly by finding their
unique global minimum. Then the MAC algorithm for the binary autoencoder
stops at a finite µ.

Theorem 2. Let e(z) = ‖x− f(z)‖2 + µ‖z− h(x)‖2. Then: (1) A global minimizer
z
∗ of e(z) is at a Hamming distance from h(x) of 1

µ
‖x− f(h(x))‖2 or less. (2) If

µ > ‖x− f(h(x))‖2 then h(x) is a global minimizer.

4 Experiments

Parallel processing:
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The algorithm is highly parallel:

•We train BA on CIFAR dataset.

•We use the Matlab Parallel Processing
Toolbox with up to 12 processors and sim-
ply replace “for” with “parfor” loops.

•For fixed Z we have L+1 independent prob-
lems for each of the single bit hash func-
tions, and for f .

•For fixed h and f we have N independent
optimization problems each over L binary
variables.

Alternating optimization and initialization in the Z-step:
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Two approaches to initialize zn in the Z step: (1) Warm start. Initialize zn to the code found
in the previous iteration’s Z step, (2) Solve the relaxed problem on zn ∈ [0, 1]L and then
truncate it.The latter achieves better local optima than using warm starts.
Inexact Z steps achieve solutions of similar quality than exact steps but much faster. Best
results occur for g ≈ 1 in alternating optimization.

How much does respecting the binary constraints help?
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MAC optimizes EBA better than others
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MAC achieves a higher precision

NUS-WIDE-LITE dataset, N = 27 807 training/ 27 808 test images. Comparison between the
methods that minimize the binary autoencoder objective function
BA achieves lower reconstruction error and better precision using MAC than using a sub-
optimal optimization as in tPCA (truncates codes at zero), ITQ (finds the best rotation
matrix), and sigmoid (relaxes the step function to a sigmoid in training).
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