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1. Introduction

In image retrieval, a user is interested in finding similar im-

ages to a query image. Computationally, this essentially

involves defining a high-dimensional feature space where

each relevant image is represented by a vector, and then

finding the closest points to the vector for the query im-

age, according to a suitable distance (Shakhnarovich et al.,

2006). Finding nearest neighbors in a dataset of N im-

ages (where N can be millions), each a vector of di-

mension D (typically in the hundreds) is slow, since ex-

act algorithms run essentially in time O(ND) and space

O(ND). This can be approximated by binary hash-

ing (Grauman & Fergus, 2013). Here, given a high-

dimensional vector x ∈ R
D, the hash function h maps it

to a b-bit vector z = h(x) ∈ {−1,+1}b, and the nearest

neighbor search is then done in the binary space. This now

costs O(Nb) time and space, which is orders of magnitude

faster because typically b < D and, crucially, (1) oper-

ations with binary vectors (such as computing Hamming

distances) are very fast because of hardware support, and

(2) the entire dataset can fit in (fast) memory rather than

slow memory or disk.

The disadvantage is that the results are inexact, since the

neighbors in the binary space will not be identical to the

neighbors in the original space. However, the approxima-

tion error can be controlled by using sufficiently many bits

and by learning a good hash function. The general ap-

proach consists of defining a supervised objective that has a

small value for good hash functions and minimizing it. We

focus here on affinity-based loss functions, which directly

try to preserve the original similarities in the binary space

and has the following the form

min
h

L(h) =
∑N

n,m=1
L(h(xn),h(xm); ynm) (1)

where X = (x1, . . . ,xN ) is the high-dimensional dataset

of feature vectors, minh means minimizing over the pa-

rameters of the hash function h (e.g. over the weights of a

linear SVM), and L(·) is a loss function that compares the

codes for two images (often through their Hamming dis-

tance ‖h(xn)− h(xm)‖) with the ground-truth value ynm
that measures the affinity in the original space between the

two images xn and xm (distance or similarity measures;

Grauman & Fergus, 2013). The sum is often restricted to a

subset of image pairs (n,m) to keep the runtime low.

In binary hashing, the optimization is difficult, because the

hash function must output binary values, hence the prob-

lem is not just generally nonconvex, but also nonsmooth.

One can compute the gradients of the objective function

wrt the parameters of the hash function, but this is not use-

ful because they are zero nearly everywhere. Most hash-

ing approaches propose a simple but suboptimal solution.

First, one defines the objective function (1) directly on the

b-dimensional codes of each image (rather than on the hash

function parameters) and optimizes it assuming continuous

codes (in R
b). Then, one binarizes the codes for each im-

age. Finally, one learns a hash function given the codes.

Of the three-step suboptimal approach mentioned (learn

continuous codes, binarize them, learn hash function), re-

cent works manage to join the first two steps and hence

learn binary codes. Then, one learns the hash function

given these binary codes. Can we do better? Indeed, in

this work we show that all elements of the problem (binary

codes and hash function) can be incorporated in a single

algorithm that optimizes jointly over them. Hence, by ini-

tializing it from binary codes from the previous approach,

this algorithm is guaranteed to achieve a lower error and

learn better hash functions. In fact, our framework can

be seen as an iterated, corrected version of the two-step

approach: learn binary codes given the current hash func-

tion, learn hash functions given codes, iterate. The key to

achieve this is to use a recently proposed method of aux-

iliary coordinates (MAC) for optimizing “nested” systems,

i.e., consisting of the composition of two or more functions

or processing stages. MAC introduces new variables and

constraints that cause decoupling between the stages, re-

sulting in the mentioned alternation between learning the

hash function and learning the binary codes.

2. Nonlinear embedding and affinity-based

loss functions for binary hashing

The dimensionality reduction literature has developed a

number of objective functions of the form (1) (often called
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“embeddings”) where the low-dimensional projection zn ∈
R

b of each high-dimensional data point xn ∈ R
D is a

free, real-valued parameter. The neighborhood information

is encoded in the ynm values. A representative example

is the elastic embedding (Carreira-Perpiñán, 2010), where

L(zn, zm; ynm) has the form:

y+nm ‖zn − zm‖
2
+ λy−nm exp (−‖zn − zm‖

2
), λ > 0 (2)

where the first term tries to project true neighbors (having

y+nm > 0) close together, while the second repels all non-

neighbors’ projections (having y−nm > 0) from each other.

Although these models were developed to produce con-

tinuous projections, they have been successfully used for

binary hashing too by truncating their codes (Weiss et al.,

2009) or using the two-step approach of (Lin et al., 2014).

Other loss functions have been developed specifically for

hashing, where now zn is a b-bit vector (where binary val-

ues are in {−1,+1}). For example, for Supervised Hashing

with Kernels (KSH) L(zn, zm; ynm) has the form

(zTnzm − bynm)2 (3)

where ynm is 1 if xn, xm are similar and −1 if

they are dissimilar. Binary Reconstructive Embeddings

(Kulis & Darrell, 2009) uses (1
b
‖zn − zm‖

2
− ynm)2

where ynm = 1

2
‖xn − xm‖

2
. The exponential variant

of SPLH (Wang et al., 2012) proposed by Lin et al. (2013)

(which we call eSPLH) uses exp(− 1

b
ynmz

T
nzn). Our ap-

proach can be applied to any of these loss functions, though

we will mostly focus on the KSH loss for simplicity. When

the variables Z are binary, we will call these optimization

problems binary embeddings, in analogy to the more tradi-

tional continuous embeddings for dimension reduction.

3. Learning codes and hash functions using

auxiliary coordinates

The optimization of the loss L(h) in eq. (1) is difficult

because of the thresholded hash function, which appears

as the argument of the loss function L. We use the re-

cently proposed method of auxiliary coordinates (MAC)

(Carreira-Perpiñán & Wang, 2012; 2014), which is a meta-

algorithm to construct optimization algorithms for nested

functions. This proceeds in 3 stages. First, we introduce

new variables (the “auxiliary coordinates”) as equality con-

straints into the problem, with the goal of unnesting the

function. We can achieve this by introducing one binary

vector zn ∈ {−1,+1} for each point. This transforms the

original, unconstrained problem into the following, con-

strained problem:

min
h,Z

N
∑

n=1

L(zn, zm; ynm) s.t.

{

z1 = h(x1)
· · ·

zN = h(xN )
(4)

which is seen to be equivalent to (1) by eliminating Z. We

recognize as the objective function the “embedding” form

of the loss function, except that the “free” parameters zn

are in fact constrained to be the deterministic outputs of the

hash function h.

Second, we solve the constrained problem using a penalty

method, such as the quadratic-penalty (Nocedal & Wright,

2006). We solve the following minimization problem (un-

constrained again, but dependent on µ) while progressively

increasing µ, so the constraints are eventually satisfied:

minLP (h,Z;µ) =
∑N

n,m=1
L(zn, zm; ynm) + (5)

µ
∑N

n=1
‖zn − h(xn)‖

2
s.t. z1, . . . , zN ∈ {−1,+1}b.

Third, we apply alternating optimization over the binary

codes Z and the hash function parameters h. This results in

iterating the following two steps (described in detail later):

• Optimize the binary codes z1, . . . , zN given h (hence,

given the output binary codes h(x1), . . . ,h(xN ) for

each of the N images). This can be seen as a regu-

larized binary embedding, because the projections Z

are encouraged to be close to the hash function out-

puts h(X). Here, we try two different approaches

(Lin et al., 2013; 2014) with some modifications.

• Optimize the hash function h given binary codes Z.

This reduces to training b binary classifiers using X

as inputs and Z as targets.

This is very similar to the two-step (TSH) approach of

Lin et al. (2013), except that the latter learns the codes Z

in isolation, rather than given the current hash function, so

iterating the two-step approach would change nothing, and

it does not optimize the loss L. More precisely, TSH cor-

responds to optimizing LP for µ → 0+. In practice, we

start from a very small value of µ (hence, initialize MAC

from the result of TSH), and increase µ slowly while opti-

mizing LP , until the equality constraints are satisfied, i.e.,

zn = h(xn) for n = 1, . . . , N .

Theoretical results We can prove the following under

the assumption that the Z and h steps are exact. 1) The

MAC algorithm stops after a finite number of iterations,

when Z = h(X) in the Z step, since then the constraints

are satisfied and no more changes will occur to Z or h. 2)

The path over the continuous penalty parameter µ ∈ [0,∞)
is in fact discrete: the minimizer (h,Z) of LP for µ ∈
[0, µ1] is identical to the minimizer for µ = 0, and the min-

imizer for µ ∈ [µ2,∞) is identical to the minimizer for

µ → ∞, where 0 < µ1 < µ2 < ∞. Hence, it suffices

to take an initial µ no smaller than µ1 and keep increasing

it until the algorithm stops. Besides, the interval [µ1, µ2]
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is itself partitioned in a finite set of intervals so that the

minimizer changes only at interval boundaries. Hence, the-

oretically the algorithm needs only run for a finite set of µ

values (although this set can still be very big). In practice,

we increase µ more aggressively to reduce the runtime.

This is very different from the quadratic-penalty methods in

continuous optimization (Nocedal & Wright, 2006), which

was the setting considered in the original MAC papers

(Carreira-Perpiñán & Wang, 2012; 2014). There, the mini-

mizer varies continuously with µ, which must be driven to

infinity to converge to a stationary point, and in so doing it

gives rise to ill-conditioning and slow convergence.

3.1. h step

Given the binary codes z1, . . . , zN , since h does not appear

in the first term of LP , this simply involves finding a hash

function h that minimizes

min
h

N
∑

n=1

‖zn − h(xn)‖
2 =

b
∑

i=1

min
hi

N
∑

n=1

(zni − hi(xn))
2

where zni ∈ {−1,+1} is the ith bit of the binary vector

zn. Hence, we can find b one-bit hash functions in parallel

and concatenate them into the b-bit hash function. Each of

these is a binary classification problem using the number

of misclassified patterns as loss. This allows us to use a

regular classifier for h, and even to use a simpler surrogate

loss (such as the hinge loss), since this will also enforce the

constraints eventually (as µ increases). For example, we

can fit an SVM by optimizing the margin plus the slack and

using a high penalty for misclassified patterns. We discuss

other classifiers in the experiments.

3.2. Z step

Although the MAC technique has significantly simplified

the original problem, the step over Z is still complex. This

involves finding the binary codes given the hash functionh,

and it is an NP-complete problem in Nb binary variables.

Fortunately, some recent works have proposed practical ap-

proaches for this problem based on alternating optimiza-

tion: a quadratic surrogate method (Lin et al., 2013), and a

GraphCut method (Lin et al., 2014).

In both the quadratic surrogate and the GraphCut method,

the starting point is to apply alternating optimization over

the ith bit of all points given the remaining bits are fixed

for all points (for i = 1, . . . , b), and to solve the optimiza-

tion over the ith bit approximately. Here, we only explain

the solution using the GraphCut algorithm. In our exper-

iments, we show the results for both quadratic surrogate

and GraphCut method.We start by describing the GraphCut

method in its original form (which applies to the loss func-

tion over binary codes, i.e., the first term in LP ), and then

we give our modification to make it work with our Z step

objective (the regularized loss function over binary codes,

i.e., the complete LP ).

Solution using a GraphCut algorithm (Lin et al., 2014)

To optimize over the ith bit (given all the other bits are

fixed), we have to minimize the following objective func-

tion (see (Lin et al., 2013) for details):

min
z(i)

N
∑

n,m=1

1

2
znizmianm + µ

N
∑

n=1

(zni − hi(xn))
2.

where zni is the ith bit of the nth point and anm ∈ R

is constant. In general, this is an NP-complete problem

over N bits (the ith bit for each image), with the form of

a quadratic function on binary variables. We can apply the

GraphCut algorithm (Boykov & Kolmogorov, 2003; 2004;

Kolmogorov & Zabih, 2003), as proposed by the FastHash

algorithm of Lin et al. (2014). This proceeds as follows.

First, we assign all the data points to different, possibly

overlapping groups (blocks). Then, we minimize the objec-

tive function over the binary codes of the same block, while

all the other binary codes are fixed, then proceed with the

next block, etc. (that is, we do alternating optimization of

the bits over the blocks). Specifically, to optimize over the

bits in block B, we can rewrite equation (3.2) as:

minz(i,B)

∑

n,m∈B anmznizmi+2
∑

n∈B,m 6∈B anmznizmi−

µ
∑

n∈B znihi(xn).

We then rewrite this equation in the standard form for the

GraphCut algorithm:

minz(i,B)

∑

n∈B

∑

m∈B vnmznizmi +
∑

n∈B unmzni

where vnm = anm, unm = 2
∑

m 6∈B anmzmi − µhi(xn).
To minimize the objective function using the GraphCut al-

gorithm, the blocks have to define a submodular function.

This can be easily achieved by putting points with the same

label in one block.

Unlike in the quadratic surrogate method, using the Graph-

Cut algorithm with alternating optimization on blocks

defining submodular functions is guaranteed to find a Z that

has a lower or equal objective value that the initial one, and

therefore to decrease monotonically LP .

4. Experiments

In this section, we report a small subset of our exper-

iments. More results can be found in the main paper

(Raziperchikolaei & Carreira-Perpiñán, 2016). We use the

KSH (3) and eSPLH as the loss functions, quadratic surro-

gate and GraphCut methods for the Z step in MAC, and lin-

ear and kernel SVMs as the hash functions. Here, we only

show the results on the CIFAR (Krizhevsky, 2009) dataset

that contains 60 000 images in 10 classes. We use D = 320
GIST features (Oliva & Torralba, 2001) from each image.

The main comparison points are the quadratic surrogate

and GraphCut methods of Lin et al. (2013; 2014), which
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Figure 1. KSH on CIFAR dataset, using b = 48 bits.
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Figure 2. Like fig. 1 but showing the value of the error function

E(Z) of eq. (6) for the “free” binary codes, and for the codes pro-

duced by the hash functions learned by cut (the two-step method)

and MACcut, with linear and kernel hash functions.

we denote in this section as quad and cut, respectively.

Correspondingly, we denote the MAC version of these as

MACquad and MACcut, respectively.

The MAC algorithm finds better optima Our goal is

not to introduce a new affinity-based loss or hash func-

tion, but to describe a generic framework to construct al-

gorithms that optimize a given combination thereof. We

illustrate its effectiveness here with the CIFAR dataset.

Fig. 1(left) shows the KSH loss function for all the methods

over iterations of the MAC algorithm (KSH, quad and cut

do not iterate), as well as precision and recall. It is clear that

MACcut (red lines) and MACquad (magenta lines) reduce

the loss function more than cut (blue lines) and quad (black

lines), respectively, as well as the original KSH algorithm

(cyan), in all cases: type of hash function (linear: dashed

lines, kernel: solid lines) and number of bits b = 16 to 48.

Hence, applying MAC is always beneficial. Reducing the

loss nearly always translates into better precision and re-

call. The gain of MACcut/MACquad over cut/quad is sig-

nificant, often comparable to the gain obtained by changing

from the linear to the kernel hash function within the same

algorithm. Interestingly, MACquad and MACcut end up be-

ing very similar even though they started very differently.

This suggests it is not crucial which of the two methods to

use in the MAC Z step.

Why does MAC learn better hash functions? In both

the two-step and MAC approaches, the starting point are

the “free” binary codes obtained by minimizing the loss

{−1,+1}b×N

free binary

codes

codes from optimal

hash function

codes realizable

by hash functions

two-step codes

Figure 3. Illustration of free codes, two-step codes and optimal

codes realizable by a hash function, in the space {−1,+1}b×N .

over the codes without them being the output of a particular

hash function. That is, minimizing (4) without the “zn =
h(xn)” constraints:

min
Z

E(Z) =

N
∑

n=1

L(zn, zm; ynm),

{

z1, . . . , zN
∈ {−1,+1}b.

(6)

The resulting free codes try to achieve good precision/recall

independently of whether a hash function can actually pro-

duce such codes. Constraining the codes to be realizable by

a specific family of hash functions (say, linear), means the

loss E(Z) will be larger than for free codes. How difficult

is it for a hash function to produce the free codes? Fig. 2

plots the loss function for the free codes, the two-step codes

from cut, and the codes from MACcut, for both linear and

kernel hash functions in the same experiment as in fig. 1.

It is clear that the free codes have a very low loss E(Z),
which is far from what a kernel function can produce, and

even farther from what a linear function can produce. Both

of these are relatively smooth functions that cannot repre-

sent the presumably complex structure of the free codes.

This could be improved by using a very flexible hash func-

tion (e.g. using a kernel function with many centers), which

could better approximate the free codes, but 1) a very flex-

ible function would likely not generalize well, and 2) we

require fast hash functions for fast retrieval anyway. Given

our linear or kernel hash functions, what the two-step cut

optimization does is fit the hash function directly to the

free codes. This is not guaranteed to find the best hash

function in terms of the original problem (1), and indeed it

produces a pretty suboptimal function. In contrast, MAC

gradually optimizes both the codes and the hash function

so they eventually match, and finds a better hash function

for the original problem (although it is still not guaranteed

to find the globally optimal function of problem (1)).

Fig. 3 illustrates this conceptually. It shows the space of

all possible binary codes, the contours of E(Z) (green)

and the set of codes that can be produced by (say) linear

hash functions h (gray), which is the feasible set {Z ∈
{−1,+1}b×N : Z = h(X) for linear h}. The two-step

codes “project” the free codes onto the feasible set, but

these are not the codes for the optimal hash function h.
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