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1 Binary hash functions for fast image retrieval

In K nearest neighbors problem, there are N training points in D-dimensional
space (usually D > 100) xi ∈ RD, i = 1, . . . , N . The goal is to find the K nearest
neighbors of a query point xq ∈ RD.

•Exact search in the original space is O(ND) in time and space.

A binary hash function h takes as input a high-dimensional vector x ∈ RD

and maps it to an b-bit vector z = h(x) ∈ {0, 1}b. The search is done in this
low-dimensional, binary space.

•The main goal is preserving the neighborhood, i.e., assign (dis)similar
codes to (dis)similar patterns.
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Finding K nearest neighbors in Hamming space is more efficient:

•Time and space complexities would be O(Nb) instead of O(ND).

•Hamming Distance can be computed efficiently and fast using hardware
operations.

Suppose that N = 109, D = 500
and b = 64

Search in Space Time
original space 2 TB 1 hour

Hamming space 8 GB 10 seconds

2 Affinity-based objective functions

Hashing papers first define a supervised objective that has a small value for
good hash functions. They then try to minimize this objective function.
We focus here on affinity-based loss functions, which directly try to preserve
the original similarities in the binary space.

minL(h) =
∑N

n,m=1L(h(xn),h(xm); ynm)

where xi ∈ RD is the i-th input data, h is the parameters of the hash func-
tion, L(·) is a loss function that compares the codes for two images with
the ground-truth value ynm that measures the affinity in the original space
between the two images xn and xm.
Examples of the loss function L(zn, zm; ynm):

KSH: (zTnzm−bynm)
2 BRE: (
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‖zn − zm‖
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1

b
ynmz

T
nzn)

If the hash function h was a continuous function, one could compute deriva-
tives over the parameters of h and then apply a nonlinear optimization method.

In binary hashing, optimization is much more difficult:

• the hash function must output binary values, hence the problem is not just
generally nonconvex, but also nonsmooth.

•While the gradients of the objective function do exist wrt W, they are zero
nearly everywhere.

3 Optimization using two-step approach

Most hashing papers follow a simple but suboptimal approach:

•Define the objective function directly on the b-dimensional codes of each im-
age (instead of the hash functions) and optimizes it. This is an NP-complete
problem with Nb binary variables. This can be solved approximately.

•Learn the hash function given the codes, by training several classifiers.

The main issue of this approach is that it does not consider the relation between
the binary codes and the hash function in optimizing the codes (the first step).

4 Optimization using auxiliary coordinates

We show that all elements of the problem (binary codes and hash function) can
be incorporated in a single algorithm that optimizes jointly over them.

We use the method of auxiliary coordinates (MAC), a generic approach to op-
timize nested functions. First, we introduce auxiliary coordinates zn ∈ {−1,+1}b

as the output of h(xn) and convert the problem for L(h) into an equivalent con-
strained problem:

Lc(h,Z) =
∑N

n=1L(zn, zm; ynm) s.t. z1 = h(x1), · · · , zN = h(xN)

Now we apply the quadratic-penalty method:

LP (h,Z;µ) =
∑N

n,m=1L(zn, zm; ynm) + µ
∑N

n=1 ‖zn − h(xn)‖
2

where z1, . . . , zN ∈ {−1,+1}b. We start with a small µ and increase it slowly. To
optimize LP (h,Z;µ) we apply alternating optimization:

•Optimization over Z given h. This is an NP-complete problem over bN binary
variables and can be seen as a regularized binary embedding.

•Optimization over h given Z: minh
∑N

n=1 ‖zn − h(xn)‖
2. This is equivalent to train-

ing b binary classifiers with data (X,Z).

The Z-step is still complex. Some recent works have proposed practical ap-
proaches for this: (1) apply alternating optimization over the i-th bit of all points
given the remaining bits are fixed. This gives a binary quadratic problem. (2)
Solve this quadratic problem approximately (using methods like GraphCut).

The two-step approach (TSH) corresponds to optimizing LP for µ → 0+. In prac-
tice, we start from a very small value of µ (hence, initialize MAC from the result
of TSH).

Advantages of optimizing affinity-based objectives using MAC:

• It optimizes jointly over the binary codes and the hash function in alternation
resulting in a better local optimum of the affinity-based loss.

• It performs better than previous, two-step approaches in both optimization and
information retrieval measures like precision and recall.

•Our framework makes it easy to design an optimization algorithm for a new
choice of loss function or hash function.
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This figure shows the space of all possi-
ble binary codes and the faesible set for
linear hash functions. The contours cor-
responds to Lc defined only on codes.
The two-step method projects the free
codes into the feasible set.
MAC optimizes the codes and functions
jointly to find a better local optima.

5 Theoretical results

We can prove the following under the assumption that the Z and h steps are exact:

1. The MAC algorithm stops after a finite number of iterations, when Z = h(X) in the Z step,
since then the constraints are satisfied and no more changes will occur to Z or h.

2. The path over the continuous penalty parameter µ ∈ [0,∞) is in fact discrete: the mini-
mizer (h,Z) of LP for µ ∈ [0, µ1] is identical to the minimizer for µ = 0, and the minimizer
for µ ∈ [µ2,∞) is identical to the minimizer for µ → ∞, where 0 < µ1 < µ2 < ∞. Hence, it
suffices to take an initial µ no smaller than µ1 and keep increasing it until the algorithm
stops. In practice, we increase µ more aggressively to reduce the runtime.

6 Experiments

lo
s
s

fu
n

c
ti
o

n
L

2 4 6 8 10 12 14

5.2

5.4

5.6

5.8
x 10

6

 

 

ker-MACcut
lin-MACcut
ker-MACquad
lin-MACquad
ker-cut
lin-cut
ker-quad
lin-quad
ker-KSH

iterations

p
re

c
is

io
n

600 700 800 900 1000
30

35

40

45

48

k retrieved points

We compare our proposed method MAC with the two step methods that use quadratic sur-
rogate and GraphCut methods in the optimization over codes. We denote these methods
as cut and quad. The MAC version of them is called MACcut and MACquad.
We use a subset of 10 000 points of CIFAR dataset and we use two types of hash functions
(linear and kernel SVMs). MAC finds hash functions with significantly lower objective func-
tion values than the two-step approaches. Reducing the loss nearly always translates into
better precision and recall.

KSH loss eSPLH loss
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MAC learns better hash functions. We achieve free codes by minimizing Lc over the binary
codes Z without any constraint. Free codes are the starting point of both cut and MACcut.
Free codes always achieve lower error than the cut and MACcut.
MAC achieves lower error than the cut using both linear and kernel hash function and us-
ing different loss functions. MAC gradually optimizes both the codes and the hash function
so they eventually match, and finds a better hash function for the original problem.
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