
LEARNING SUPERVISED BINARY HASHING: OPTIMIZATION VS DIVERSITY

Ramin Raziperchikolaei and Miguel Á. Carreira-Perpiñán

Electrical Engineering and Computer Science
University of California, Merced, USA

ABSTRACT

Binary hashing is a practical approach for fast, approximate retrieval

in large image databases. The goal is to learn a hash function that

maps high-dimensional images onto a binary vector such that Ham-

ming distances approximate semantic similarities. The search is then

fast by using hardware support for binary operations. Most hash-

ing papers define a complicated objective function that couples the

single-bit hash functions. A recent work has shown the surprising

result that by learning the single-bit functions independently and

making them diverse using ensemble learning techniques, one can

achieve simpler optimization, faster training, and better retrieval re-

sults. In this paper, we study the interplay between optimization and

diversity in learning good hash functions. We show that to achieve

good hash functions, no matter how we optimize the objective, the

diversity among the single-bit hash functions is a crucial element.

Index Terms— Image retrieval, ensemble learning, optimization

1. INTRODUCTION

In image retrieval problems, the goal is to search a large database of

images and find the ones that are similar to the test images. This can

be seen as a k-nearest-neighbors problem where we are interested

in the nearest neighbors of the test images. We usually have a large

database containing millions of images, where each image is repre-

sented by high-dimensional feature vectors. In this case, the exact

search is impractical. Binary hashing is an efficient approach that

solves this problem approximately, but very fast [1]. The idea is to

learn a hash function that maps high-dimensional images into binary

codes and then find the nearest neighbors in the binary space. This

has two main advantages: (1) the search is fast because hardware op-

erations can be used to compute the Hamming distances between the

codes and (2) billions of images can be stored in the main memory

of a single machine if the binary feature vectors are short enough.

The goal of binary hashing is to learn a b-bits hash function that

preserves the similarities of the original images in the new binary

space. There are two approaches to achieve this: optimization-based

and ensemble-based approaches. In optimization-based approaches

[2, 3, 4, 5, 6], all the single-bit hash functions are coupled in the

objective function, using constraints or penalty terms. This leads to

complicated objectives that are difficult to optimize and can not scale

well. In the ensemble-based approach [7, 8], the objective function is

defined over only a single-bit hash function. The b-bits hash function

is learned by minimizing this objective b times independently and

making the functions different using ensemble learning techniques.

The ensemble-based approach has several advantages: simpler op-

timization problems, faster training, massive parallelism, scalability

to large datasets, and better retrieval performance. We give a quick

review of the ensemble-based approach in section 2.

Work supported by NSF award IIS–1423515.

This poses an intriguing question: how important is diversity

vs optimization in preserving neighborhoods and making the hash

functions differ? In section 3, we give a review of different ways to

optimize a 1-bit objective function. In section 4, we investigate the

importance of diversity by experimentally controlling the quality of

the optimization of the 1-bit objective function with different algo-

rithms and observing its effect on the learned b-bit hash function.

1.1. Related work

Data dependent hashing methods learn the hash function by minimiz-

ing an objective, defined over the training points. They perform bet-

ter than data independent methods, which do not have any training

(e.g. considering random hyperplanes [9] as the hash functions). In

unsupervised hashing [10, 11, 12], the similarity between the points

is defined based on their closeness in the Euclidean space. We focus

on supervised hashing [3, 5] where the objective is to preserve the

semantic similarity, where the points that are far away in Euclidean

space can still be considered similar to each other.

Most hashing papers define a complicated objective function

that couples the single-bit functions and then try to optimize it in an

approximate way [2, 3, 13, 14, 5, 15, 6]. In [13, 14, 5], the objective

is optimized over the binary codes in the first step and the hash func-

tions are learned a posteriori. In [15, 6], one optimizes the objective

function jointly over the codes and hash functions, while preserv-

ing the binary constraints. A recent method, Independent Laplacian

Hashing (ILH) [7], proposes to learn the single-bit hash functions

independently and make them diverse using ensemble diversity ap-

proaches. ILH can be improved by pruning a set of hash functions

and selecting the training subsets locally [8].

2. INDEPENDENT LAPLACIAN HASHING (ILH)

Independent Laplacian Hashing (ILH) [7] is the first supervised hash-

ing method that uses diversity techniques to make the hash functions

differ. The main idea of ILH is to optimize the same objective over a

single-bit hash function b times independently, and make the single-

bit functions different using techniques from the ensemble learning

literature. Specifically, assume that h(·) is a hash function that takes

an input x ∈ R
D and outputs a single bit in {−1,+1}. ILH pro-

poses to optimize the following objective b times independently:

min
h

P (h) = h(X)Ah(X)T =
∑N

n,m=1
anm h(xn)h(xm) (1)

where h(X) = (h(x1), . . . , h(xN)) ∈ {−1,+1}N is a row vec-

tor of N bits, A = (anm) ∈ R
N×N is the affinity matrix for the

training set X = (x1, . . . ,xN) ∈ R
D×N , and the minimization is

over the parameters of h. For example, the affinity amn can be +1,

−1 or 0 for similar, dissimilar or indifferent points xn and xm. If

the training sets differ across hash functions, then so do the affinity

matrices and we learn different hash functions.

The ensemble-based approach proposed by ILH gives several

advantages: (1) optimization problems are easier to solve, (2) the

retrieval results are better, (3) hash functions can be learned in par-

allel, and (4) it scales to large datasets. In [7], the best results were

achieved when ILH used different training subsets to make the func-

tions different. We consider this mechanism whenever we refer to

ILH.

3. OPTIMIZING SINGLE HASH FUNCTIONS: REVIEW

In this section, we give a review of several representative optimiza-

tion algorithms that have been used before in the hashing literature

to optimize objective functions. We describe them for the case where

we have a single hash function. With b = 1, they become particu-

larly simple and efficient and it is instructive to understand this. This

is important because all of these optimization algorithms can be used

in ILH to minimizes P (h) in eq. (1) approximately and learn each

of the 1-bit hash functions. This also provides an apples-to-apples

comparison between optimization algorithms on the same objective

function, which is lacking in the literature of binary hashing, which

has mostly focused on contributing new objective functions and/or

hash functions and algorithms tailored to them. We compare these

algorithms experimentally in section 4, to see: (1) which of these

algorithms optimizes the objective function better, (2) whether a bet-

ter optimization leads to a better retrieval, and (3) the critical role of

diversity as we put the 1-bit hash functions together.

We focus on optimizing the objective function of eq. (1) over a

single hash function h: R
D → {−1,+1}. Some of our develop-

ment corresponds to the particular case when the hash function is

linear: h(x) = (wTx), where (t) = +1 if t ≥ 0 and −1 if

t < 0, and we have augmented x with an extra constant element

of value 1, so that the corresponding element in w represents a bias

parameter. In this case the objective function is

min
w∈RD

P (w) = (wT
X)A (wT

X)T =
∑N

n,m=1
anm (w

Txn) (w
Txm). (2)

We will describe several optimization algorithms. Two of them are

applicable to any type of hash function (two-step and MAC) and

the other two are only convenient for linear hash functions (direct

alternating optimization and relaxed eigenproblem).

Before describing the algorithms, we present a basic character-

ization of the optimization problem to give an idea of its difficulty.

Although this argument is valid for a more general parametric hash

function, consider for simplicity the case of a linear hash function

h(x) = (wTx). The objective P (w) is piecewise constant over

w, because the number of possible values of h(X) is 2N and thus

the number of possible values of P (w) is finite, and upper bounded

by 2N . The actual number of regions is much smaller than 2N be-

cause some binary codes z ∈ {−1,+1}N cannot be achieved by

any linear function operating on X. Also, if the matrix A has in-

teger elements (0 or ±1 in many papers), the number of values of

P (w) is even smaller. Thus, if we vary w ∈ R
D by a small amount,

either P (w) will not change (and stay within a piece of P of con-

stant value), or it will change discontinuously (and move to another

piece).

Let us look at the objective over just one element of w, say wd:

pd(wd) =
∑N

n,m=1
anm (wdxdn + cdn) (wdxdm + cdm) (3)

where 1 ≤ d ≤ D, cdn =
∑D

i=1,i6=d wixin. The function pd(wd) is

piecewise constant in at most N + 1 intervals −∞ < −cd1/xd1 ≤
· · · ≤ −cdN/xdN < ∞ (where we reassign w.l.o.g. the indices

so that the values −cdn/xdn are sorted increasingly, and consider

only values for which xdn 6= 0). The global minimum of pd(wd)
must occur at one (or more) of these intervals. These intervals can

be represented by their midpoints (plus two arbitrary points in the

infinite intervals at each end), and the global minimum can be found

by evaluating pd(wd) at those points.

Hence, the gradient of P (w) is either 0 or it does not exist, so

we cannot use gradient-based optimization, at least using the chain

rule. The algorithms described below use other approaches.

3.1. Two-step optimization

Many binary hashing papers use this approach with a variety of ob-

jective functions and hash functions [16, 13, 10, 11, 14, 5]. The idea

is to introduce the N -bit binary code z ∈ {0, 1}N and define the ob-

jective function over z instead of the hash functions h(·) in eq. (1):

minz E(z) = zAzT with z ∈ {−1,+1}N . (4)

First step is to optimize E(z) over z regardless of the hash func-

tion, and the second step is to fit the hash function h to these codes.

As mentioned above, the minimization of E(z) is an NP-

complete problem, and there are various approximation algorithms

that can be used. Here we capitalize on min-cut [17, 18], which

has a well-developed implementation that can efficiently solve sub-

modular E(z) for large N . Following [5], we subdivide A into sub-

modular groups of binary variables and run alternating optimization

on these blocks, solving each with min-cut. A different algorithm

described below that relaxes the binary codes into an eigenproblem

and then fits the hash function is also a two-step approach.

3.2. MAC (method of auxiliary coordinates) optimization

The basic idea in the method of auxiliary coordinates (MAC) [19, 20]

is to introduce auxiliary coordinates that break functional nesting

and simplify the optimization. It has been applied to binary hash-

ing with binary autoencoders [12] and affinity-based loss functions

[6]. Following the latter, we write the “nested” problem (1) as an

equivalent, constrained problem without nesting:

minh,z E(z) = zAzT s.t. z = h(X) ∈ {−1,+1}N . (5)

We now solve the constrained problem using the quadratic-penalty

method [21]. This involves solving a sequence of unconstrained

problems for µ → ∞ of the form:

minh,z E(z) + µ ‖z− h(X)‖2 = zAzT + µ ‖z− h(X)‖2.

where z ∈ {−1,+1}N . Finally, we apply alternating optimization

over the codes z and the hash function h in the following two steps:

• z step (1D binary embedding): optimize over z for fixed h:

minz zAzT + µ ‖z− h(X)‖2 = zAzT − 2µh(X)zT +constant

where we have used the fact that z2 = 1 if z ∈ {−1,+1}. This is a

binary optimization like that of E(z) in eq. (4) except that it carries a

“regularization” term µ‖z− h(X)‖2 that drives the codes z towards

the function outputs h(X) with a weight µ that keeps increasing

during training. This can be seen as a Markov random field with a

unary potential −2µh(X) and a quadratic potential E(z) = zAzT .

We can optimize this with the same algorithms as for E(z).

• h step (fit classifier): optimize over h for fixed z:

minh ‖z− h(X)‖2 =
∑N

n=1
(zn − h(xn))

2 (6)

h can be learned by fitting a classifier to the inputs X and labels z.

MAC jointly optimizes over z and h, while a two-step algorithm

greedily optimizes first over z and then over h, which is suboptimal.

MAC improves over the two-step algorithm in binary autoencoders

and affinity-based loss functions for binary hashing [12, 6].

3.3. Direct alternating optimization

Here, we minimize P (w) by alternating optimization (coordinate de-

scent) on w = (w1, . . . , wD)T , optimizing in turn pd(wd) in eq. (3)

over each element of w. This was used in BRE [2] over all b bits,

which noted the BRE objective was piecewise constant over a single

entry of its b×D weight matrix. Our algorithm is for only one bit but

for a more general objective (2), both of which result in a simpler and

faster algorithm. The minimization over each wd, d = 1, . . . , D can

be done exactly in polynomial time. As noted earlier, the objective

function pd(wd) over a single element wd ∈ R of w has the form of

a piecewise constant function on at most N + 1 intervals of positive

length, two of them infinite (at the ends), and the rest finite (the in-

terior intervals). Therefore at least one of these intervals consists of

global minimizers. Clearly, the global minimum of pd(wd) can be

found simply by evaluating pd at one point in each interval. Naively,

this would cost O((D + κ + logN)N2) for one element of w and

therefore O((D+ κ+ logN)DN2) for all D elements, which con-

stitutes one iteration of alternating optimization, where 1 ≤ κ ≤ N
is the number of nonzeros per row of A (equal to the number of posi-

tive and negative neighbors for each point). Although polynomial in

D and N , this is very slow, and would not scale beyond a few thou-

sand points. It can be shown that the exact solution can be found in

only O((κ + logN)DN) time and O(N + D) space per iteration.

The main idea is to compute both cdn and pd(wd) in eq. (3), exactly

but fast incrementally (similar to the idea in [2]).

The alternating optimization terminates in a finite number of it-

erations because pd(wd) can take 2N different values at most, one

for each possible code z = h(X) ∈ {−1,+1}N , and the algorithm

only updates wd when it decreases pd(wd). In practice, it stops in

very few iterations, typically no more than 10. Given its low cost per

iteration, this makes it comparatively fast. The convergence point

is very sensitive to the initial w, and one should not initialize from

w = 0 (or small ‖w‖ in general).

Alternating optimization can also be applied to the objective

function over the codes in eq. (4), one bit at a time, and this is

the method of iterated conditional modes (ICM) [22]. ICM also

converges in very few iterations and is sensitive to the initial codes.

Methods based on graph cuts achieve better optima [23, 17, 18].

3.4. Relaxed eigenproblem and truncation

Relaxation is an approach that can be used directly or as initialization

for a secondary optimization [16, 13, 10, 24, 3]. We consider two

algorithms based on relaxation: one applied to the binary codes z,

and the other applied directly to the hash function weight vector w.

• Relaxing the binary codes z We apply a two-step approach

but relax the step over the codes. That is, since z2n = 1 for n =
1, . . . , N , then zzT = N . Hence, relaxing eq. (4) we obtain:

minz∈RN zAzT s.t. zzT = 1. (7)

This is a (typically) sparse eigenproblem of N×N . Since in general

A is not positive semidefinite, z is the eigenvector associated with

the most negative eigenvalue. Having obtained z, we binarize the

codes z by thresholding their sign and train a classifier on them, as

in the two-step approach above. We have used zzT = 1 rather than

zzT = N because it does not change the result of the binarization.

• Relaxing directly on w Since P (w) is invariant to scaling w,

we can set ‖w‖ = 1. If we relax P (w) by dropping the (·) step

functions, we obtain the following eigenproblem:

minw∈RD wT (XAXT)w s.t. wTw = 1. (8)

This is a dense eigenproblem of D × D. In general XAXT is not

positive semidefinite, so w is the eigenvector associated with the

most negative eigenvalue.

Both of these relaxations are similar to spectral dimensionality reduc-

tion using a Laplacian objective and a latent space of dimension 1.

Specifically, relaxing the binary codes in (7) is like solving a Lapla-

cian eigenmaps problem [25] where the graph Laplacian matrix is A,

which is not positive semidefinite. Likewise, relaxing directly on w

is similar to locality preserving projection (LPP) [26], which does:

minw yAyT s.t. yyT = 1, y = wTX

⇐⇒ minw wT (XAXT)w s.t. wT (XXT)w = 1 (9)

so it solves a generalized eigenproblem.

4. EXPERIMENTS

We investigate the interplay of optimization and diversity in learn-

ing good hash functions. We use CIFAR [27] dataset that contains

60 000 images in 10 classes with 58 000/2 000 images as the train-

ing/test sets. Each image is represented by D = 320 SIFT features

[28]. The positive neighbors and ground-truth set of a point x are

all the points with the same label as the label of x. The retrieved set

contains the r nearest neighbors of the query in the Hamming space.

Most hashing papers use a small subset of training set to train

the hash functions [2, 3, 14, 15]. In our experiments, all the hash

functions are trained using training subsets of 5 000 points that are

selected randomly from the dataset. To evaluate the methods, we

search the entire dataset to find the nearest neighbors of a query. We

consider linear SVMs (trained with LIBLINEAR [29]) as the hash

function for the cut, relaxed-codes and MAC methods.

4.1. Optimization vs diversity in learning hash functions

We first compare the six optimization algorithms that are explained

in section 3: Two-step optimization (cut), MAC optimization, direct

alternating optimization (alt opt), relaxing the binary codes in eq. (7)

(relaxed-codes), relaxing the weights w in eq. (8) (relaxed-weights),

relaxing the weights w in eq. (9) similar to the locally linear projec-

tion (relaxed-LPP). After that, we show the importance of diversity

as we combine the hash functions and compare the role of diversity

and optimization in learning the hash functions.

Does a better 1-bit optimization lead to a better retrieval? We

first create 64 training subsets of 5000 points, randomly from the

CIFAR dataset. Then, for each of the 1-bit optimization algorithms,

we optimize the objective function of eq. (2) on one of the subsets to

learn a 1-bit hash function. Repeating this for all the subsets gives

us 64 1-bit hash functions for each of the algorithms. In the left

panel of fig. 1, we plot the distribution of the objective function error

(bottom) and the distribution of the precision (top) of the 1-bit hash

functions for each of the algorithms. To be able to compare the two

plots easily, we compute the distribution of −P (h) instead of P (h).
By looking at the left panel of fig. 1, we find that by decreasing

the value of the objective function (better optimization), we achieve

a better precision. We can see this in different ways. Hash functions

of relaxed-LPP give the lowest objective function error and also the

highest precision. Also, relaxed-codes gives the worst optimization

and 1-bit precision values. MAC always beats cut by decreasing the

objective error of each of the hash functions and improving the 1-bit

precisions. We can also compare the variance in the value of the

objective function with the variance in the 1-bit precision. Methods

like relaxed-weights and relaxed-LPP have small variance in the

distribution of their objective function values and precisions. The

other four methods have a large variance in both of the distributions.

10 11 12 13 14 15

precision

−1 0 1 2 3 4 5 6

−error
p
re

ci
si

o
n

8 16 32 64
10

20

30

40

cut

MAC

alt opt

relaxed−weights

relaxed−LPP

relaxed−codes

number of bits b

Fig. 1. Optimization vs diversity in the 1-bit case. Left plots: distri-

bution of the 1-bit precision (top) and negative error (bottom, defined

as −P (h) = −h(X)Ah(X)T × 105) over 64 1-bit functions. The

diversity of the hash functions corresponds to the variance of the dis-

tributions. Lower error correlates with higher precision. Right plot:

b-bit precision of the hashing methods. Methods with low diversity

perform poorly even if they use 1-bit functions with higher precision.

Optimization vs diversity. We put the 1-bit hash functions together,

create groups of 8 to 64 bits and report their precisions in the right

panel of fig. 1. It illustrates the importance of the diversity in combin-

ing the hash functions. While the 1-bit hash functions of the relaxed-

LPP give the best precisions, the combination of those bits does not

perform better than the 1-bit case and gives one of the worst preci-

sions comparing to other methods. This could happen when the 64
hash functions (and consequently the binary codes) are very similar

and we gain almost nothing by putting them together. For a b-bit

hash function, a better 1-bit optimization only improves the preci-

sion significantly if there is sufficient diversity.

By looking at the distribution of the objective error and preci-

sion of a specific method, we can judge its diversity. As the variance

of the error increases, the variance of the precision also increases,

which leads to more diversity and better precision by combining the

hash functions. Methods like cut, MAC, and relaxed-codes, which

have a high variance in their precision and error, show much better

performance as we combine the 1-bit hash functions.

Does the hash function fit the binary codes accurately?

0 5 10

cut−codes

cut−linh

cut−kerh

relaxed−codes

relaxed−linh

relaxed−kerh

−error = −P (z) = −zAz
T
× 105

gap (cut)

gap (relaxed)

Fig. 2. Gap between the desired

binary codes and the codes pro-

duced by the learned hash func-

tions. We plot the distribution of

the 1-bit errors in both cases, for

the two-step methods (cut and re-

laxed). For the 1-bit hash func-

tions we set z = h(X) and com-

pute the errors.

We explore this by re-

peating the previous experi-

ment and comparing binary

codes and hash functions of

the two-step methods. In

fig. 2, we report the distri-

bution of the objective error

for the 1-bit binary codes and

hash functions using eq. (4)

and eq. (2), respectively. cut-

codes (relaxed-codes) denotes

the binary codes achieved by

the cut (relaxed-codes) opti-

mization and cut-lin (relaxed-

lin) and cut-ker (relaxed-ker)

denote the linear and kernel

SVMs learned based on the

codes. The figure shows that

the cut algorithm finds much

better local optima than the

relaxed-codes. It also shows

that there is a large gap be-

tween the output of the hash

functions and binary codes. We can make the gap a little smaller by

using kernel SVMs or other nonlinear hash functions.

KSH objective PCA objective

p
re

ci
si

o
n

0 40 80 120 160 200
10

15

20

25

30

35

40

45

number of bits b

t = 1

t = 16

t = 32
t = 64

t = 128

t = 200

0 40 80 120 160 200

12

16

20

number of bits b

t = 1 t = 4

t = 8

t = 16
t = 32

t = 64
t = 128

t = 200

Fig. 3. Optimization vs diversity in the t-bit case. ILH learns b/t
independent t-bit hash functions for KSH and PCA.

Optimization vs diversity in the t-bit case. We create b/t training

subsets where each of them containing 5 000 points from CIFAR

dataset. We train t-bit hash functions (instead of the 1-bit ones) on

each of the subsets to learn the final b-bit hash function (b = 200 in

this experiment). To learn the t-bit functions, we use the KSH and

PCA objective functions. In general, both objective functions couple

the 1-bit hash functions to make them different.

The parameter t determines the source of the diversity among

the hash functions. For t = 1, we optimize 200 1-bit objective func-

tions, each of them on a different subset. In this case, independent

training sets are the source of diversity. For t = 200, we optimize

the coupled objective function on only one subset of points, and use

the optimization technique to make the functions diverse.

Fig. 3 (left) shows the results of using the KSH objective func-

tion. The best results are achieved when we use independent training

sets to make the functions diverse (t = 1). This is because optimiz-

ing the single bit objective is easier, the functions are diverse and

trained on larger sets of points (implicitly). As we decrease the value

of t (use more optimization than diversity), the precision decreases.

Consider the PCA objective (bagged PCA [30]) in fig. 3 (right).

Here, the precision is minimal for t = 1, because in PCA the first

few principal components (weights of the hash functions) of differ-

ent subsets of a dataset are very similar to each other. The reason is

that the direction of the variance in these subsets is very similar to the

direction of the variance in the main dataset. By increasing t, we in-

crease the number of principal components from each subset, which

makes the hash functions diverse with better performance. When we

use t > 32, we couple the hash functions more and more, use more

optimization (lose diversity), and we achieve worse precisions.

We conclude that independent training sets do not necessarily

lead to diverse hash functions. We may need both optimization tech-

nique and independent sets to make the hash functions diverse. Also,

while both optimization and diversity are important, diversity is cru-

cial to get significant improvement as we use groups of bits.

5. CONCLUSION

To learn a supervised b-bit hash function, most hashing papers try to

approximately optimize a complicated objective function that cou-

ples all the single-bit hash functions. A recent paper proposed a new

approach (ILH): define an objective function over a single-bit hash

function, optimize it independently b times but make the B single-bit

functions differ using ensemble-based diversity approaches.

We have investigated the interplay between diversity and opti-

mization in learning good hash functions by studying several 1-bit

optimization algorithms. Among our findings, a result that emerges

consistently is that, although improving the optimization can im-

prove the results of hash functions, diversity is the absolutely crucial

element, without which hashing becomes ineffective. This explains

the success of simple methods that construct bits independently, ei-

ther with learning (like ILH) or without it (like LSH).

6. REFERENCES

[1] Kristen Grauman and Rob Fergus, “Learning binary hash

codes for large-scale image search,” in Machine Learning for

Computer Vision, 2013.

[2] Brian Kulis and Trevor Darrell, “Learning to hash with binary

reconstructive embeddings,” in Advances in Neural Informa-

tion Processing Systems (NIPS), 2009.

[3] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-

Fu Chang, “Supervised hashing with kernels,” in Proc. of

the 2012 IEEE Computer Society Conf. Computer Vision and

Pattern Recognition (CVPR’12), 2012.

[4] Mohammad Norouzi and David Fleet, “Minimal loss hashing

for compact binary codes,” in Proc. of the 28th Int. Conf. Ma-

chine Learning (ICML 2011), 2011.

[5] Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton van den

Hengel, and David Suter, “Fast supervised hashing with de-

cision trees for high-dimensional data,” in Proc. of the 2014

IEEE Computer Society Conf. Computer Vision and Pattern

Recognition (CVPR’14), 2014.

[6] Ramin Raziperchikolaei and Miguel Á. Carreira-Perpiñán,

“Optimizing affinity-based binary hashing using auxiliary co-

ordinates,” in Advances in Neural Information Processing Sys-

tems (NIPS). 2016.

[7] Miguel Á. Carreira-Perpiñán and Ramin Raziperchikolaei, “An

ensemble diversity approach to supervised binary hashing,” in

Advances in Neural Information Processing Systems (NIPS).

2016.

[8] Ramin Raziperchikolaei and Miguel Á. Carreira-Perpiñán,

“Learning independent, diverse binary hash functions: Pruning

and locality,” in Proc. of the 17th IEEE Int. Conf. Data Mining

(ICDM 2016), 2016.

[9] Alexandr Andoni and Piotr Indyk, “Near-optimal hashing algo-

rithms for approximate nearest neighbor in high dimensions,”

Comm. ACM, 2008.

[10] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang, “Hash-

ing with graphs,” in Proc. of the 28th Int. Conf. Machine Learn-

ing (ICML 2011), 2011.

[11] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent

Perronnin, “Iterative quantization: A Procrustean approach to

learning binary codes for large-scale image retrieval,” IEEE

Trans. Pattern Analysis and Machine Intelligence, 2013.

[12] Miguel Á. Carreira-Perpiñán and Ramin Raziperchikolaei,

“Hashing with binary autoencoders,” in Proc. of the 2015 IEEE

Computer Society Conf. Computer Vision and Pattern Recogni-

tion (CVPR’15), 2015.

[13] Dell Zhang, Jun Wang, Deng Cai, and Jinsong Lu, “Self-taught

hashing for fast similarity search,” in Proc. of the 33rd ACM

Conf. Research and Development in Information Retrieval (SI-

GIR 2010),2010.

[14] Guosheng Lin, Chunhua Shen, David Suter, and Anton van den

Hengel, “A general two-step approach to learning-based hash-

ing,” in Proc. 14th Int. Conf. Computer Vision (ICCV’13),

2013.

[15] Tiezheng Ge, Kaiming He, and Jian Sun, “Graph cuts for super-

vised binary coding,” in Proc. 13th European Conf. Computer

Vision (ECCV’14), 2014.

[16] Yair Weiss, Antonio Torralba, and Rob Fergus, “Spectral hash-

ing,” in Advances in Neural Information Processing Systems

(NIPS), 2009.

[17] Yuri Boykov, Olga Veksler, and Ramin Zabih, “Fast approxi-

mate energy minimization via graph cuts,” IEEE Trans. Pattern

Analysis and Machine Intelligence, 2001.

[18] Vladimir Kolmogorov and Ramin Zabih, “What energy func-

tions can be minimized via graph cuts?,” IEEE Trans. Pattern

Analysis and Machine Intelligence, 2003.

[19] Miguel Á. Carreira-Perpiñán and Weiran Wang, “Distributed

optimization of deeply nested systems,” arXiv:1212.5921

[cs.LG], 2012.

[20] Miguel Á. Carreira-Perpiñán and Weiran Wang, “Distributed

optimization of deeply nested systems,” in Proc. of the 17th

Int. Conf. Artificial Intelligence and Statistics (AISTATS 2014),

2014.

[21] Jorge Nocedal and Stephen J. Wright, Numerical Optimiza-

tion, Springer Series in Operations Research and Financial

Engineering, 2006.

[22] Julian Besag, “On the statistical-analysis of dirty pictures,” J.

Statistical Society B, 1986.

[23] D. M. Greig, B. T. Porteous, and A. H. Seheult, “Exact maxi-

mum a posteriori estimation for binary images,” J. Statistical

Society B, 1989.

[24] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang, “Semi-

supervised hashing for large scale search,” IEEE Trans. Pattern

Analysis and Machine Intelligence, 2012.

[25] Mikhail Belkin and Partha Niyogi, “Laplacian eigenmaps

for dimensionality reduction and data representation,” Neural

Computation, 2003.

[26] Xiaofei He and Partha Niyogi, “Locality preserving projec-

tions,” in Advances in Neural Information Processing Systems

(NIPS), 2004.

[27] Alex Krizhevsky, “Learning multiple layers of features from

tiny images,” M.S. thesis, Dept. of Computer Science, Univer-

sity of Toronto, 2009.

[28] Aude Oliva and Antonio Torralba, “Modeling the shape of the

scene: A holistic representation of the spatial envelope,” Int. J.

Computer Vision, 2001.

[29] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui

Wang, and Chih-Jen Lin, “LIBLINEAR: A library for large

linear classification,” J. Machine Learning Research, 2008.

[30] Cong Leng, Jian Cheng, Ting Yuan, Xiao Bai, and Hanqing

Lu, “Learning binary codes with bagging PCA,” in Proc. of

the 25th European Conf. Machine Learning (ECML–14), 2014.

	 Introduction
	 Related work

	 Independent Laplacian Hashing (ILH)
	 Optimizing single hash functions: Review
	 Two-step optimization
	 MAC (method of auxiliary coordinates) optimization
	 Direct alternating optimization
	 Relaxed eigenproblem and truncation

	 Experiments
	 Optimization vs diversity in learning hash functions

	 Conclusion
	 References

