
Learning Independent, Diverse Binary Hash Functions: Pruning and Locality

Ramin Raziperchikolaei and Miguel Á. Carreira-Perpiñán

Electrical Engineering and Computer Science

University of California, Merced. Merced, CA, USA

Emails: rraziperchikolaei@ucmerced.edu, mcarreira-perpinan@ucmerced.edu

Abstract—Information retrieval in large databases of com-
plex objects, such as images, audio or documents, requires
approximate search algorithms in practice, in order to return
semantically similar objects to a given query in a reasonable
time. One practical approach is supervised binary hashing,
where each object is mapped onto a small binary vector so that
Hamming distances approximate semantic similarities, and the
search is done in the binary space more efficiently. Much work
has focused on designing objective functions and optimization
algorithms for learning b-bit hash functions from a dataset.
Recent work has shown that comparable or better results can
be obtained by training b hash functions independently from
each other and making them cooperate by introducing diversity
with ensemble learning techniques. We show that this can be
further improved by two techniques: pruning an ensemble of
hash functions, and learning local hash functions. We show
how it is possible to train our improved algorithms in datasets
orders of magnitude larger than those used by most works on
supervised binary hashing.

Keywords-binary hashing; ensemble diversity; optimization;
information retrieval.

I. INTRODUCTION

Efficient k-nearest neighbor search has many applications

in data mining and information retrieval problems. As an

example, in image retrieval problems, we are interested in

finding similar images to a query by searching a very large

database of images. The exact nearest neighbor search takes

O(ND) in both time and space if we have N images in D
dimensional space. Since images are usually represented by

high-dimensional feature vectors and there are millions of

images in the database, the exact search is very slow. For this

reason, several efficient and fast algorithms are proposed to

solve the same problem approximately. In this paper, we will

focus on binary hashing. A binary hash function h(·), takes

a point x ∈ R
D in high dimensional space and maps it to a

b-bit binary code z ∈ {0, 1}b. Finding nearest neighbors of a

query in binary space is much faster because it uses efficient

hardware operations to compute Hamming distances, and

because the entire database in binary form takes only bN
bits, which may fit in main memory.

While binary hashing helps in accelerating the search

speed significantly, it introduces errors: the result of near-

est neighbor search in binary space is different from the

exact search. The main goal of hashing papers is to make

this difference as small as possible. Many recent hashing

methods try to learn the hash functions by optimizing an

objective function defined on the training points, which has

two main goals. The first goal is to learn binary codes

that preserve the neighborhood. This can be achieved by

minimizing an objective that returns a small value when

similar (dissimilar) points in original space are mapped

into nearby (far away) binary codes. The second goal is

to make the hash functions different from each other, since

nothing is gained if they are identical. Exactly how this is

incorporated into the optimization depends on each method.

In many methods (for example, those based on the well-

known Laplacian loss; [1], [2], [3]) this is done by adding

orthogonality constraints or penalties.

Most optimization-based hashing papers propose either

a new objective function [4], [5], [6] or a new optimiza-

tion algorithm [7], [8] to optimize the existing objectives.

Optimizing these objective functions is difficult and slow

because they contain bN binary variables that are coupled

together, which makes the objective nondifferentiable. Even

with the best binary optimization algorithms (such as min-

cut [9] and GraphCut [10], possibly combined with the

method of auxiliary coordinates [11]), we cannot train the

hash functions on more than a few thousand points in a

reasonable amount of time.

A recently proposed method, Independent Laplacian Hash-

ing (ILH) [12], takes a very different approach. ILH drops

the interaction between the 1-bit hash functions in the

objective and replaces it with a diversity-inducing mech-

anism based on ensemble learning techniques. The 1-bit

hash functions are learned independently, so the optimiza-

tion is vastly easier, more efficient, embarrassingly parallel,

and can use larger training sets. (In fact, in the single-bit

case all binary hashing objective functions can be written

in the same mathematical form, namely a quadratic bi-

nary problem.) And, as shown in [12], ILH actually beats

optimization-based approaches in precision-recall.

In this paper, we propose two important improvements to

ILH: in section III, pruning a large set of 1-bit hash functions

gives a small subset of functions with comparable retrieval

quality; and in section IV, learning local hash functions

introduces further diversity and improves the retrieval quality.

Our experiments in section V show that these simple, very

efficient methods learn hash functions that can beat almost

all the state-of-the-art methods in image retrieval tasks.



A. Related work

There are two main approaches to achieve binary hash

functions: (1) data independent approach where there is

no training (such as considering the hash functions as the

random hyperplanes [13], [14]), and (2) data dependent

approach that learns the hash functions by minimizing an

objective function using the training points (it performs

better than the first approach). The data dependent methods

can be either supervised, where semantic similarity deter-

mines similar and dissimilar pairs of points [5], [7], or

unsupervised, where the distance between the points in the

original space is the similarity measure [15], [16], [17]. Here

we focus on supervised data dependent methods.

Several affinity-based objective functions have been pro-

posed in the literature. They have two main goals: (1)

preserving the neighborhood by creating an affinity matrix of

the points based on their semantic similarity, and (2) making

the hash functions different from each other. Most hashing

methods define a loss function that couples all the 1-bit

hash functions and use optimization techniques to achieve

the mentioned goals [5], [4], [6]. Binary reconstructive

embedding [4] uses direct alternating optimization over the

weights of hash functions to minimize the objective function.

Supervised hashing with kernels [5] ignores the binary codes,

optimizes the continuous objective function, and truncates

the results to get the binary codes. To optimize the objective

functions better, two-step methods are proposed [1], [18], [7].

They define the objective function on binary codes, learn the

codes using alternating optimization, and finally fit the hash

functions (classifiers) on the binary codes. More recently,

methods are proposed that try to optimize the binary codes

and hash functions jointly [3], [8]. Hashing with auxiliary

coordinates [8] defines the new binary coordinates as the

output of the hash functions and uses quadratic penalty

methods to define an objective function over both binary

codes and hash functions, which can be later optimized in

an alternation between the codes and functions.

Bagging has been recently used to improve the perfor-

mance of binary hash functions learned with PCA as the

number of bits increases [19]. The motivation of using en-

semble learning diversity techniques in ILH [12] is different:

to uncouple the optimization in supervised binary hashing.

II. INDEPENDENT LAPLACIAN HASHING (ILH)

Independent Laplacian Hashing (ILH) [12] is the first

supervised hashing method that uses diversity techniques

to make the hash functions differ. Consider the problem of

learning a b-bit hash function, which maps a given input

point x ∈ R
D to a b-bit vector in {−1,+1}b, given a training

set containing supervisory information in the form of pairs

of similar, dissimilar or indifferent points. Traditionally, one

would define an objective function of the b-bit hash function

containing constraints or penalties to make the b bits differ.

The fundamental idea in ILH is to define b independent

objective functions each operating on a 1-bit hash function,

and make them differ via diversity-inducing techniques from

ensemble learning, such as using a different training subset

for each bit. Specifically, each 1-bit objective function has

the form (equivalent to a Laplacian loss):

min
h

h(X)Ah(X)T =

N
∑

n,m=1

anm h(xn)h(xm) (1)

where h(X) = (h(x1), . . . , h(xn)) ∈ {−1,+1}N is a row

vector of N bits, A = (anm) ∈ R
N×N is the affinity matrix

for the training set X = (x1, . . . ,xN ) ∈ R
D×N , and the

minimization is over the parameters of h. For example, h

can be a thresholded linear function, and the affinity amn can

be +1, −1 or 0 for similar, dissimilar or indifferent points xn

and xm. If the training sets differ across hash functions, then

so do the affinity matrices and we learn different functions.

Optimizing the objective (1) b times independently to

learn the b hash functions has several advantages over

optimizing an objective functions that couple all b hash func-

tions: (1) the large binary optimization over bN variables

separates into b independent optimizations over only N vari-

ables, which can be solved faster and more accurately; (2)

training is embarrassingly parallel; and (3) model selection

(to choose the best number of bits) becomes easier. ILH uses

the two-step optimization to minimize (1).

Importantly, the quadratic form of the objective in (1) is

not restrictive. As shown in [12], any affinity-based objective

function (where each term depends on a pair of points) that

uses a 1-bit hash function can be written as a quadratic

function. This is not true if using b > 1 bits, and indeed

many different such objective functions have been proposed.

Various diversity-inducing mechanisms are possible [12],

including using different initializations for the optimization,

using different subsets of features of x, and using different

and disjoint subsets of training points picked randomly

(referred to as ILHt in [12]). The latter works best and is

the one we use in this paper; we will refer to it as ILH.

III. PRUNING A SET OF HASH FUNCTIONS: ILH-PRUNE

Given a set of b 1-bit hash functions, the goal is to select

a subset of s hash functions which performs comparably

well in a retrieval task. The resulting s-bit codes are, of

course, faster to search than the b-bit codes. (Our pruning

algorithm is applicable to any set of hash functions, although

we will apply it to the result of ILH.) This is similar to

pruning a classifier ensemble [20], an effective and widely

used technique to produce very good, compact classifiers.

Ideally, we seek the subset of hash functions that maxi-

mizes the precision (or other measure such as the F -score)

on a given test set of queries. A brute-force search is

impractical because there are
(

b

s

)

subsets. We solve this com-

binatorial problem approximately with a greedy algorithm,

sequential forward selection, which is considered the most



effective in ensemble learning [21], [20]. Starting with an

empty set, it repeatedly adds the hash function that, when

combined with the current set, gives highest precision. We

stop when we reach s functions, where s is set by the user

(e.g. to achieve a desired test runtime), or when we reach

a desired percentage of the precision of the entire set of b
functions; note it is possible for a smaller subset to exceed

this precision. The result is deterministic given the b hash

functions (unless there are ties) and defines an order in which

the functions should be picked.

Assuming a test set of M query vectors and a base set

(where we search) of N vectors, all of dimension D, the

computational complexity of pruning is linear on the base

set size. Indeed, computing the binary codes for all points

is O(bD(M +N)) (assuming linear hash functions), which

we need to do even if we do not use pruning. Then, for

i = 1, . . . , b − 1 we have to determine the optimal ith
hash function among the remaining b− i+ 1. The required

Hamming distances can be updated incrementally, by adding

to each distance so far (using the already selected i − 1
functions) the distance corresponding to the ith bit if using

the jth remaining function; this is O(MN). Then, in order

to find the function that gives the best precision, we need

to sort the N distances for each of the M queries, which

can be done in linear time using Counting Sort (since the

distances are in {0, . . . , b} and b ≪ N ) [22]; this is O(MN).
This has to be done for each of the b − i + 1 remaining

hash functions, so each step is O((b − i + 1)MN), and

the total for the for loop is O(b2MN). The grand total is

O(b2MN + bD(N +M)) = O(bN(bM +D)) if M ≪ N .

Finally, each of the steps above parallelizes embarrassingly

over the query set and over the hash functions.

IV. TRAINING LOCAL HASH FUNCTIONS: ILH-LOCAL

One problem with the selection of the training subsets in

ILH is that, although disjoint, they will have high overlap

over the input space, which will decrease the resulting

diversity, particularly as the number of bits increases. We can

avoid this by selecting spatially local subsets. Specifically,

we define the training subset for a given hash function as a

training point xn (picked at random, the seed for that local

subset) and its k nearest neighbors. This can be done in

O(N(D + logN)) per hash function (for computing and

sorting the distances).

The locality parameter k varies in {1, . . . , N−1} (where

N is the size of the whole training set) and controls

how local the hash function is. If k is very small, the

neighborhoods are very local and likely disjoint, and the

hash function will look like a random hyperplane through

that neighborhood. (For k = 1, a good hash function

would simply be the bisecting hyperplane that assigns a

different code to xn and its nearest neighbor and maximizes

the margin.) The functions will behave similarly to that

of random projection algorithms such as LSH [13]. As k

ILH ILH-local

Figure 1. Learning local hash functions improves the diversity and
neighborhood preservation. Data points marked as ◦ were used to train
the hash functions (they are colored according to the hash function they
train). Some points may have used for training different hash functions in
ILH-local. Data points marked as + were not used for training.

increases, the neighborhoods become less local spatially and

less disjoint. They become identical for k = N−1, at which

point there is no diversity, so the precision must drop for

large k (though this will likely not happen unless k ≫ N/b).
There are other ways to define local subsets (e.g. run-

ning a clustering algorithm such as k-means), but ours is

nonparametric, requires no training and has no local optima.

Likewise, other definitions of local neighborhood of a point

xn are possible, such as the points within a distance ǫ of xn,

or even just the kth nearest neighbor of xn. Better sampling

for the seeds could be done with k-centres or k-means++

[23], which improves the chances to get more local and

disjoint subsets at the cost of a larger computation.

Fig. 1 illustrates this with a dataset of 250 2D points

sampled from a Gaussian mixture with 50 components. We

learn b = 10 hash functions. With ILH, some of the 1-bit

hash functions are very similar to each other, which results

in some small code regions with few or no data points at all.

Pruning this set of functions would remove redundant ones,

but also reduce the number of bits and code regions. ILH-

local learns diverse hash functions that lie in different parts

of the input space and produce more uniform code regions

that better preserve neighborhoods. For example, note the

clusters of points in the upper corners of each figure. ILH-

local preserves the neighborhood by separating those clusters

from each other and assigning them different binary codes,

while ILH assigns the same binary code to several clusters,

which destroys the similarity. Ideally we would like that a

cluster be partitioned only by local hash functions, while

being contained on a single region of nonlocal functions.

This would preserve distances better for points in the cluster.

V. EXPERIMENTS 1

We show that our proposed methods ILH-prune (prunes

a given set of hash functions) and ILH-local (learns local

hash functions) improve the retrieval quality. We use three

different datasets in our experiments to evaluate different

methods: (1) CIFAR [24] dataset contains 60 000 points in

1Matlab code for the algorithms can be found in the authors’ web pages.



10 classes. We consider 58 000 images for training and 2 000
images for test. Each image is represented by D = 320 SIFT

features [25]. (2) Infinite MNIST [26]. We generated, using

elastic deformations of the original MNIST handwritten digit

dataset, 1 000 000 images for training and 2 000 for test,

in 10 classes. We represent each image by a D = 784
vector of raw pixels (3) Flickr [27] dataset contains 1 000 000
points, each of them represented by D = 150 MPEG-7 edge

histogram features. We randomly select 2 000 points for the

test and consider the rest as the training set.

Most hashing papers use a small subset of training set to

train the hash functions [4], [5], [18], [3]. In our experiments

all the hash functions are trained using training subsets of

5 000 points that are selected randomly from the dataset

(except ILH-local that picks local subsets). To evaluate the

methods, we search the entire dataset to find the nearest

neighbors of a query. We consider linear hash functions for

all the methods. ILH-local and ILH-prune use linear SVMs

(trained with LIBLINEAR [28]) as the 1-bit hash functions.

For CIFAR and Infinite MNIST, the positive neighbors of

a point x are all the points with the same label as the label of

x. For Flickr, K = 10 000 nearest neighbors of each point in

original space are considered as the positive neighbors. The

rest of the points are considered as the negative neighbors.

The affinity matrix A contains 100 positive and 100 negative

neighbors per training point, chosen randomly from all the

positive and negative neighbors of that point.

To report the precision and recall, we define the ground-

truth and retrieved sets. The ground-truth set of each query

contains all the positive neighbors of that query among the

points in the training set. The retrieved set contains the r
nearest neighbors of the query in the Hamming space.

A. Pruning the learned hash functions

We investigate the effect of pruning a set of hash functions

learned with ILH on the CIFAR and infinite MNIST datasets.

Precision as a function of number of bits b. In fig. 3 (left),

we compare the pruning method with four different methods:

(1) tPCA: we run PCA on the training set and truncate

it to get the binary codes, (2) LSH [13]: hash functions

are random hyperplanes that are achieved independently, (3)

KSHcut [7]: it is a state-of-the-art method that its hash

functions are coupled in the objective function (can not

train them independently), (4) ILH [12]: the b = 200 1-bit

hash functions are trained independently by solving a binary

quadratic problem. For ILH and LSH, we show 5 different

random ordering of the hash functions. ILH-prune is our

new algorithm: we start from the hash functions of ILH, we

order them using the sequential forward selection pruning

algorithm, and we report the precisions. We see that the

ILH-prune always performs better than all the other methods.

Pruning beats other methods with a large margin when we

use smaller number of bits (b < 32). The reason is that

as we increase the number of bits, the set of remained

hash functions becomes smaller, and the algorithm has less

options to choose from. Furthermore, for large number of

bits, ILH and ILH-prune have a lot of hash functions in

common (for b = 200 they are exactly the same).

Effect of the number of 1-bit functions on pruning. To

investigate this, we first run ILH to learn a set of 200 hash

functions. Then, from this set, we create subsets containing

s hash functions randomly, where s = 25, 50, 100, 150 and

200. Finally, we run pruning algorithm on each of these

subsets and report precision in fig. 3 (right). The figure

shows that The curve for s = 200 is always above all the

other curves (with s < 200). This means that by pruning a

larger set of 1-bit hash functions, we can reach to a higher

precision using a smaller number of bits.

How does the test set size affect the pruning. To explore

this, we learn a set of 200 hash functions using ILH on

CIFAR dataset. Then we prune this set using test sets of

different sizes.

p
re

ci
si

o
n

,
C

IF
A

R

0 40 80 120 160 200

20

30

40

50

 

 

number of bits b

N = 100
N = 200
N = 500
N = 1 000
N = 2 000

Figure 2. Pruning and test set size N .

In figure 2, we change

the size of the test

set from 100 to 2 000
and report the preci-

sion as a function of

number of bits. For a

test set with N ≤ 500
points, the maximum

precision is achieved

by using less than 100
bits. For a large test

sets (with N = 2 000
points in the figure), the precision always increases as we

increase the number of bits. Since in reality we expect

an infinite test set, having the largest possible set of hash

functions should give us the best results. The disadvantage of

using a large number of hash functions is its computational

cost. Pruning helps to achieve a reasonable precision with a

much less number of the hash function than the total number

of functions.

Comparison with other hashing methods. Figure 5 com-

pares our pruning algorithm with the following hashing

methods on CIFAR and infinite MNIST datasets: ILH [12],

Hashing with kernels (KSH) [5], KSHcut (FastHash) [7],

Binary Reconstructive Embeddings (BRE) [4], Self-Taught

Hashing (STH) [1], Spectral Hashing (SH) [2], Iterative

Quantization (ITQ) [16], and Locality-Sensitive Hashing

(LSH) [13]. We show results for b = 16 and 32 where

ILH-prune has access to a pool of 200 1-bit hash functions.

We can see that pruning is very useful and performs well

for these number of bits. Methods like KSH and ITQ can

beat ILH for small number of bits in these two datasets,

but pruning improves the results of ILH significantly and

becomes the best method.



p
re

ci
si

o
n

0 40 80 120 160 200

10

20

30

40

50

 

 

ILH−prune
ILH
KSHcut
tPCA
LSH

number of bits b
0 40 80 120 160 200

10

20

30

40

50

 

 

25
50
100
150
200

25

50
100

150 200

number of bits b
Figure 3. Precision as a function of number of bits in CIFAR dataset.
Left: Comparing ILH-prune with other hashing methods. Right: Effect of
increasing the number of 1-bit hash functions in pruning.

B. Learning local hash functions

Effect of the locality parameter on ILH-local. As ex-

plained in section IV, to train each of the hash functions, we

consider a random point (seed) and its k-nearest neighbors

as the training set, where k is the locality parameter. To see

the effect of the locality parameter k, we first select 200
seeds randomly and fix them. Then, we change the size of

the training subsets around the seeds and report precisions.

p
re

ci
si

o
n

,
In

f.
M

N
IS

T

0.1 0.5 1 3
74

78

82

86

 

 

ILH−local

ILH

number of training points ×104

Figure 4. ILH-local vs ILH.

Fig. 4 shows the pre-

cision as a function

of the size of the

training subsets (and

the locality parame-

ter k). First, consider

only the result of ILH-

local. The figure illus-

trates that for a very

small k, ILH-local per-

forms poorly. This is

because there is not

much information in a very small subset of points and 1-

bit hash functions perform like random projections. As we

increase the number of points, the precision starts increasing.

Here, we increase the number of points up to 30 000. It

should be mentioned that at some point the precision starts

decreasing as we increase the number of points because the

hash functions start losing the diversity. Now, we compare

the result of ILH-local with ILH. We see that ILH-local

always performs better than ILH and increasing the size of

training subsets makes the gap between them larger. This

happens because ILH-local keeps the diversity between the

hash functions even when we use a large subset of points.

Comparison with other hashing methods. We also com-

pare ILH-local with several state-of-the art hashing methods

in fig. 6 on infinite MNIST and Flickr datasets. We add these

two unsupervised methods to the list of our competitors

in the Flickr dataset: Binary Autoencoder (BA) [17] and

thresholded PCA (tPCA). Locality shows its effectiveness as

we increase the number of bits, so we report precision using

b = 128 and 200. The figure shows that ILH-local performs

better than all the other methods specifically using b = 200.

This happens because for large b the 1-bit hash functions of

b = 16 b = 32

p
re

ci
si

o
n

,C
IF

A
R

600 700 800 900 1000
15

20

25

30

35

40

45

 

 

ILH−prune
ILH
KSHcut
KSH
STH
CCA−ITQ
SH
LSH
BRE

600 700 800 900 1000
15

20

25

30

35

40

45

p
re

ci
si

o
n

,I
n

f.
M

N
IS

T

6000 7000 8000 9000 10000
40

50

60

70

80

 

 

ILH−prune
ILH
KSHcut
KSH
STH
CCA−ITQ
SH
LSH
BRE

r retrieved points
6000 7000 8000 9000 10000
40

50

60

70

80

r retrieved points

Figure 5. Comparing ILH-prune with binary hashing methods on CIFAR
and infinite MNIST datasets. The arrow shows the improvement over ILH.

all the methods (except ILH-local) will get similar to each

other and lose the diversity.

VI. DISCUSSION

Optimizing affinity-based objective functions is difficult

and slow. This is mainly because the objective function is

nonsmooth: it contains a large number of binary variables

(the bN binary codes) that are coupled and a larger number

of pairwise terms (O(N2)). These difficulties limit the

number of training points that can be used for learning the

hash functions to a few thousand. FastHash [7] is the only

exception; it uses the GraphCut algorithm to optimize the

objective on a large training set with around 100 000 points.

Independent Laplacian Hashing [12], with the pruning

and locality improvements proposed in this paper, makes

supervised binary hashing scalable to much larger datasets.

It can be trained easily on datasets with millions of points.

The main reason is the ability of ILH to train independent

hash functions on disjoint subsets of points. To see this better,

consider the following example. Assume that FastHash is

able to train b binary hash functions on a subset of N
training points in t seconds. The average time for learning

a 1-bit hash function of FastHash is the same as ILH (t/b
seconds in this example). As a result, ILH, using b disjoint

subsets, can train b hash functions in the same amount of

time as FastHash but using b times more training points than

FastHash. Also, ILH can learn the hash functions in parallel.

VII. CONCLUSION

The most common approach to learn supervised binary

hash functions is to optimize an objective function that tries

to preserve neighbors in Hamming space and make the 1-bit

hash functions differ. This is a very difficult optimization

that scales poorly to large datasets. A different approach that

works as well or better is to train the 1-bit hash functions



b = 128 b = 200

p
re

ci
si

o
n

,
In

f.
M

N
IS

T

1000 3000 5000 7000 9000
40

50

60

70

80

90

 

 

ILH−local
ILH
KSHcut
KSH
STH
CCA−ITQ
SH
LSH

1000 3000 5000 7000 9000
40

50

60

70

80

90

p
re

ci
si

o
n

,
F

li
ck

r

1000 4000 7000 10000
10

20

30

40

50

60

70

80

 

 

ILH−local
ILH
KSHcut
KSH
STH
ITQ
BA
PCA
SH
LSH

r retrieved points
1000 3000 5000 7000 9000
10

20

30

40

50

60

70

80

r retrieved points

Figure 6. Comparing ILH-local with binary hashing methods on infinite
MNIST and Flickr datasets. The arrow shows the improvement over ILH.

independently to preserve neighbors but make them diverse

by training them on different data subsets, as done by ILH.

We have proposed two methods to improve ILH even further.

Our first method prunes redundant hash functions of ILH and

achieves better retrieval results using a smaller number of

bits. Our second method forces the hash functions of ILH to

be spatially local, which leads to more diversity among the

hash functions and better results. These methods allow us

to learn binary hashing on millions of training points easily

and achieve a considerably better retrieval.

VIII. ACKNOWLEDGMENTS

Work supported by NSF award IIS–1423515.

REFERENCES

[1] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing
for fast similarity search,” in SIGIR, 2010.

[2] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in
NIPS, 2009.

[3] T. Ge, K. He, and J. Sun, “Graph cuts for supervised binary
coding,” in ECCV, 2014.

[4] B. Kulis and T. Darrell, “Learning to hash with binary
reconstructive embeddings,” in NIPS, 2009.

[5] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Super-
vised hashing with kernels,” in CVPR, 2012.

[6] M. Norouzi and D. Fleet, “Minimal loss hashing for compact
binary codes,” in ICML, 2011.

[7] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter,
“Fast supervised hashing with decision trees for high-
dimensional data,” in CVPR, 2014.

[8] R. Raziperchikolaei and M. Á. Carreira-Perpiñán, “Optimiz-
ing affinity-based binary hashing using auxiliary coordinates,”
in NIPS, 2016.

[9] Y. Boykov and V. Kolmogorov, “An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision,” PAMI, 2004.

[10] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate
energy minimization via graph cuts,” PAMI, 2001.

[11] M. Á. Carreira-Perpiñán and W. Wang, “Distributed optimiza-
tion of deeply nested systems,” in AISTATS, 2014.

[12] M. Á. Carreira-Perpiñán and R. Raziperchikolaei, “An ensem-
ble diversity approach to supervised binary hashing,” in NIPS,
2016.

[13] A. Andoni and P. Indyk, “Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions,” Comm.
ACM, 2008.

[14] B. Kulis and K. Grauman, “Kernelized locality-sensitive
hashing,” PAMI, 2012.

[15] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with
graphs,” in ICML, 2011.

[16] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative
quantization: A Procrustean approach to learning binary codes
for large-scale image retrieval,” PAMI, 2013.

[17] M. Á. Carreira-Perpiñán and R. Raziperchikolaei, “Hashing
with binary autoencoders,” in CVPR, 2015.

[18] G. Lin, C. Shen, D. Suter, and A. van den Hengel, “A general
two-step approach to learning-based hashing,” in ICCV, 2013.

[19] C. Leng, J. Cheng, T. Yuan, X. Bai, and H. Lu, “Learning
binary codes with bagging PCA,” in ECML, 2014.

[20] L. I. Kuncheva, Combining Pattern Classifiers: Methods and
Algorithms, John Wiley & Sons, 2014.

[21] D. D. Margineantu and T. G. Dietterich, “Pruning adaptive
boosting,” in ICML, 1997.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, MIT Press, 2009.

[23] D. Arthur and S. Vassilvitskii, “k-means++: The advantages
of careful seeding,” in SODA 2007, 2007.

[24] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Master’s thesis,University of Toronto, 2009.

[25] A. Oliva and A. Torralba, “Modeling the shape of the scene:
A holistic representation of the spatial envelope,” Int. J.
Computer Vision, 2001.

[26] G. Loosli, S. Canu, and L. Bottou, “Training invariant support
vector machines using selective sampling,” in Large Scale
Kernel Machines, 2007.

[27] M. J. Huiskes, B. Thomee, and M. S. Lew, “New trends and
ideas in visual concept detection: The MIR Flickr Retrieval
Evaluation Initiative,” in Proc. ACM Int. Conf. Multimedia
Information Retrieval, 2010.

[28] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin, “LIBLINEAR: A library for large linear classification,”
J. Machine Learning Research, 2008.


