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1 Binary hash functions for fast image retrieval

In K nearest neighbors problem, there are N training points in D-

dimensional space (usually D > 100) xi ∈ R
D, i = 1, . . . ,N and the

goal is finding the K nearest neighbors of a query point xq ∈ R
D.

•Exact search in the original space is O(ND) in both time and space.

A binary hash function h takes as input a high-dimensional vector

x ∈ R
D and maps it to an L-bit vector z = h(x) ∈ {0, 1}L. The search

is done in this low-dimensional, binary space.

•The main goal is preserving the neighborhood, i.e., assign (dis)similar

codes to (dis)similar patterns.
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Finding K nearest neighbors in Hamming space is more efficient:
•Both time and space complexities would be O(NL) instead of O(ND).

•Hamming Distance can be computed very efficiently using hardware operations.

Suppose that N = 109,

D = 500 and L = 64

Search in Space Time

original space 2 TB 1 hour

Hamming space 8 GB 10 seconds
2 Previous works on binary hashing

Optimizing the objective functions that have been used in dimension-

ality reduction algorithms is difficult because the codes are binary.

Most of the hashing methods use a suboptimal,“filter” approach:
1.Relax the binary constraints and solve a continuous problem.

2.Binarize the continuous codes by finding a threshold or a rotation matrix.

3.Fit L classifiers to (patterns x,codes z) to obtain the hash function h.

We seek an optimal, “wrapper” approach: optimize the objective

function jointly over linear mappings and thresholds, respecting the

binary constraints while learning h.

3 Our hashing model: Binary Autoencoder

We consider binary autoencoders as our hashing model:

EBA(h, f) =

N
∑

n=1

‖xn − f(h(xn))‖
2

s.t. h(xn) ∈ {0,1}L
.

•The encoder h:x → z maps a real vector x ∈ R
D onto a low-dimensional

binary vector z ∈ {0, 1}L (with L < D).

•The decoder f: z → x maps z back to R
D in an effort to reconstruct x.

We use the method of auxiliary coordinates (MAC), a generic

approach to optimize nested functions. First, we convert the

problem for EBA(h, f) into an equivalent constrained problem:

min
h,f,Z

N
∑

n=1

‖xn − f(zn)‖
2

s.t.
zn = h(xn) ∈ {0,1}L

n = 1, . . . ,N.

that is not nested, where zn are the auxiliary coordinates for the

output of h(xn). Now we apply the quadratic-penalty method:

EQ(h, f,Z;µ) =

N
∑

n=1

(

‖xn − f(zn)‖
2 + µ ‖zn − h(xn)‖

2
)

s.t. zn ∈ {0,1}L
, n = 1, . . . ,N

where we start with a small µ and increase it slowly. To optimize
EQ we apply alternating optimization:

•Over f for fixed Z:
∑N

n=1 ‖xn − f(zn)‖
2
. With a linear decoder

this is a straightforward linear regression with data (Z,X).

•Over h for fixed Z: minh

∑N
n=1 ‖zn − h(xn)‖

2. This separates for

each bit l = 1 . . .L. The subproblem for each bit is a binary

classification problem with data (X,Z·l).

•Over Z for fixed (h, f): minzn
e(zn) = ‖x − f(zn)‖

2 + µ ‖zn − h(x)‖2
.

This is a binary optimization on NL variables, but it separates

into N independent optimizations each on only L variables.

With L . 16 we can afford an exhaustive search and for larger

L, we use alternating optimization.

Advantages of optimizing BA using MAC: It respects the binary

constraints and introduces significant parallelism in optimiza-

tion. Furthermore, the individual steps in alternating optimiza-

tion are (reasonably) easy to solve.

4 Experiments
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Two approaches to initialize zn

in the Z step:

•Warm start: Initialize zn to the

code found in the previous iter-

ation’s Z step.

•Solve the relaxed problem on

zn ∈ [0, 1]L and then truncate

it.

The latter achieves better local

optima than using warm starts.
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The algorithm is highly parallel:

•For fixed Z we have L+1 inde-

pendent problems for each of

the L single-bit hash functions,

and for f.

•For fixed h and f we have N in-

dependent optimization prob-

lems each over L variables.

8 16 24 32
0.6

0.8

1

1.2

1.4

1.6
x 10

5

a
u

to
e

n
c
o

d
e

r
e

rr
o

r

number of bits L

MAC optimizes EBA better than others
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MAC achieves a higher precision NUS-WIDE-LITE dataset, N = 27 807 training/

27 808 test images. Comparison between the

methods that minimize the binary autoencoder

objective function

BA achieves lower reconstruction error and also

better precision/recall using MAC than using a

suboptimal optimization as in tPCA (truncates

codes at zero), ITQ (finds the best rotation

matrix), and sigmoid (relaxes the step function

to a sigmoid in training using backpropagation).

K = 10 000 Neighbors Hamming Distance r ≤ 3
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SIFT1M dataset, N = 1 000 000 training/ 10 000

test images.

We compare our proposed method (BA) with

other state-of-the art methods. To report pre-

cision, we consider groundtruth K = 10 000

neighbors and set of retrieved neighbors for

k = 10 000 and r ≤ 3. Generally BA beats all

other methods.

We compare our BA that uses a linear hash function and simply min-

imizes the reconstruction error with several hashing methods that

learn nonlinear hash functions and use more sophisticated error func-

tions . Results show that BA outperforms other methods, often by a

large margin.
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