Binary hash functions for fast image retrieval

In K nearest neighbors problem, there are N training points In D-
dimensional space (usually D > 100) x; € R”,j = 1,..., N and the
goal is finding the K nearest neighbors of a query point x, € R”.

e Exact search in the original space is O(ND) in both time and space.
A binary hash function h takes as input a high-dimensional vector
x € R” and maps it to an L-bit vector z = h(x) € {0, 1}*. The search
IS done In this low-dimensional, binary space.

e [ he main goal is preserving the neighborhood, I.e., assign (dis)similar

codes to (dis)similar patterns.
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Finding K nearest neighbors in Hamming space is more efficient:
e Both time and space complexities would be O(NL) instead of O(ND).
e Hamming Distance can be computed very efficiently using hardware operations.

o Search in Space Time
Suppose that N = 107, original space 2 1B 1 hour
D =500 and L = 64 Hamming space 8 GB 10 seconds

Previous works on binary hashing

Optimizing the objective functions that have been used in dimension-
ality reduction algorithms is difficult because the codes are binary.

Most of the hashing methods use a suboptimal,“filter” approach:
1. Relax the binary constraints and solve a continuous problem.

2.Binarize the continuous codes by finding a threshold or a rotation matrix.

3. Fit L classifiers to (patterns x,codes z) to obtain the hash function h.

We seek an optimal, “wrapper” approach: optimize the objective
function jointly over linear mappings and thresholds, respecting the
binary constraints while learning h.

0ur hashing model: Binary Autoencoder

We consider binary autoencoders as our hashing model:

N
Esa(h.f) =) [x,—f(h(x,))[|® st h(x,) € {0,1}"
n=1

e The encoder h: x — z maps a real vector x € R” onto a low-dimensional
binary vector z € {0, 1}+ (with L < D).

e The decoder f:z — x maps z back to R” in an effort to reconstruct x.

We use the method of auxiliary coordinates (MAC), a generic

approach to optimize nested functions. First, we convert the

problem for Ega(h, f) into an equivalent constrained problem:

N
mip 2 I = Hz)” st Ty

that i1s not nest_ed, where z,, are the auxiliary coordinates for the

output of h(x,). Now we apply the quadratic-penalty method:
N

Ea(h,£,Z; 1) = Y (IIxn— (20)* + 12|20 — h(x,)|*)

n=1
st.z,e{0,1}", n=1,....N
where we start with a small ;« and increase it slowly. To optimize
Eq we apply alternating optimization:
e Over f for fixed Z. Z,’L Ix, — f(z,)||°. With a linear decoder
this is a straightforward linear regression with data (Z, X).
e Over h for fixed Z: miny Z,’L |z, — h(x,)||°. This separates for
each bit / = 1...L. The subproblem for each bit is a binary
classification problem with data (X, Z,).

o« Over Z for fixed (h, f): minz_e(z,) = ||x — f(z,)||° + 1 ||z, — h(X)]°.

This i1s a binary optimization on NL variables, but it separates
Into N Independent optimizations each on only L variables.
With L < 16 we can afford an exhaustive search and for larger
L, we use alternating optimization.
Advantages of optimizing BA using MAC: It respects the binary
constraints and introduces significant parallelism in optimiza-
tion. Furthermore, the individual steps in alternating optimiza-
tion are (reasonably) easy to solve.
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Two approaches to initialize z, —

in the Z step:

- eWarm start: Initialize z,, to the 8|

Q.
code found in the previous iter- 3
ation’s Z step. 8

« Solve the relaxed problem on &
z, € [0,1]* and then truncate
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The algorithm is highly parallel:

| eFor fixed Z we have L+1 inde-
pendent problems for each of
the L single-bit hash functions,
and for f.

| e For fixed h and f we have N in-
dependent optimization prob-
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We compare our BA that uses a linear hash function and simply min-
iImizes the reconstruction error with several hashing methods that
learn nonlinear hash functions and use more sophisticated error func-
tions . Results show that BA outperforms other methods, often by a

large margin.
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NUS-WIDE-LITE dataset, N = 27807 training/
27 808 test images. Comparison between the
methods that minimize the binary autoencoder
objective function

BA achieves lower reconstruction error and also
better precision/recall using MAC than using a
suboptimal optimization as in tPCA (truncates
codes at zero), ITQ (finds the best rotation
matrix), and sigmoid (relaxes the step function
to a sigmoid in training using backpropagation).

SIFT1M dataset, N = 1 000 000 training/ 10 000
test Iimages.

We compare our proposed method (BA) with
other state-of-the art methods. To report pre-
cision, we consider groundtruth K = 10000
neighbors and set of retrieved neighbors for
k = 10000 and r < 3. Generally BA beats all
other methods.
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