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Problem definition. Hybrid recommender systems use user feedback on items and user/item side
information to help users identify the items that best fit their personal tastes [1]. Side information
includes the content of items (e.g., category, title, description, etc.) and profile of users (e.g., age,
location, gender, etc.). We focus on predicting explicit feedback (e.g., a ratings beetwen 1 and 5).

Assume we have a sparse rating matrix R ∈ Rm×n, where m and n are the number of users and
items, respectively. Rjk > 0 is the rating of the user j on the item k, and Rjk = 0 means the rating
is unknown. Assume the side information of all the users and items are represented by X and Y,
respectively. The goal is to predict the unknown ratings of the matrix R.
Autoencoder-based methods The most widely-used neural network structure in recommender
systems has been (denoising) autoencoders [2, 7–12]. These methods define gu(), fu(), gi(), f i() as
the user’s encoder, user’s decoder, item’s encoder, and item’s decoder, respectively. The output of
the encoders gu() and gi() are the learned neural representations of the users and items. They also
consider U ∈ Rm×d and V ∈ Rn×d as the d-dimensional representations of the users and items,
respectively. Their objective function can then be written as:

min
U,V,θ

Qrec(θ) + λ1QMF(U,V) + λ2||U− gu(R,X)||2 + λ3||V − gi(R,Y)||2, (1)
where the reconstruction loss Qrec and the matrix factorization loss QMF are defined as follows:

Qrec(θ) = L(fu(gu(R,X)))+L(f i(gi(R,Y))), QMF(U,V) =
∑
j,k

1(Rjk)||Rjk−Uj,:V
T
k,:||2 (2)

where θ contains all the parameters of the two autoencoders and Uj,: denotes the jth row of the
matrix U. The indicator function 1(arg) returns 1 when arg > 0, and 0 otherwise.

We divide the objective function of Eq. (1) into three parts: 1) the reconstruction loss Qrec trying to
reconstruct the ratings and the side information of the users and items, 2) the matrix factorization (MF)
loss QMF decomposing the rating matrix into user and item representations, which will be used for
the prediction later, and 3) the third and fourth terms of Eq. (1) trying to keep the representations U
and V in some distance from the neural representations. We argue that these two terms play the role
of regularizer, where they keep U and V from converging to the solution of MF. The hyper-parameters
λ2 and λ3 determine how far the U and V should be from the neural representations.

The main issue of the objective function in (1) is that the motivation behind using neural representation
for the regularization purpose is unclear. Also, it is difficult to decide how far/close the neural and MF
representations should be from each other, i.e., it is difficult to set the hyper-parameters λ2 and λ3.
Neural Representation for Prediction (NRP). We define the NRP framework that learns one set
of user and item representations from the neural networks and uses them for the prediction directly,
instead of using them as the regularizer. Similar to the previous works, our model contains two
autoencoders, one for the users and one for the items. The difference is that the encoders’ outputs are
the only user/item representations in our model. Here is our objective function:

min
θ
Qrec(θ) + λ1

∑
j,k

1(Rjk)||Rjk − gu(Rj ,Xj)
Tgi(Rk,Yk)||2. (3)

Our objective in Eq. (3) gives three advantages over the previous works: 1) the hyper-parameters λ2
and λ3, from Eq. (1), are removed, 2) the number of parameters decreased as we removed U and V,
which helps in faster training and saving memory, and 3) the network can be trained end-to-end, as
there is no need to optimize over U and V.
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Figure 1: Visualization of the optimal solutions
of different methods. The figure shows the con-
tours over the users and items representations (U
and V).

Table 1: RMSE of NPR Compared with the base-
line and state-of-the-art methods. "OM" means out
of memory.

method ml100k ml1m Amazon Ichiba

MF [6] 0.940 0.892 1.153 1.00

Autorec [9] 0.921 0.889 2.19 2.47

NeuMF [5] 0.948 0.886 1.140 0.900

DHA [8] 0.939 0.865 OM OM

NRPDHA 0.926 0.855 1.135 OM

aSDAE [2] 0.946 0.879 OM OM

NRPaSDAE 0.910 0.877 1.24 OM

NRPdirect 0.897 0.851 1.135 0.889

We now analyze the objective of Eq. (3), compare it with the one in Eq. (1), and explain why the
neural representations act as a regularizer in previous works. We rewrite our objective in (3) as:

min
θ,U,V

QNRP(θ,U,V) = Qrec(θ)+λ1QMF(U,V) s.t. U = gu(R,X) and V = gi(R,Y). (4)

The objective functions in Equations (3) and (4) are equivalent, so we focus on comparing (4) with
(1). We consider two special cases of the objective function in Eq. (1). First, consider the case where
λ2 = λ3 = 0, which makes the last two terms 0. The first term Qrec can also be removed since they
do not contain the user/item representations U and V. So only the MF term remains. The second
case is when λ2 = λ3 →∞. We can theoretically show that in this case the two objective functions
in (1) and (4) will be equivalent (i.e. they have the same optimal solution).

Fig. 1 shows a simple visualization of the objective functions and their optimal solutions. In this
figure, the green contours correspond to the MF (by setting λ2 = λ3 = 0 in Eq. (1)) and the magenta
contours correspond to QNRP(·), the main term of our objective function in Eq. (4). The feasible
set, which satisfies our constraints in Eq. (4), has been shown by a blue rectangle. This feasible set
contains the low-dimensional representations that can be created by the user and item encoders. The
optimal solution of our objective function in Eq. (4) lies where the contour line of QNRP(·) with the
smallest value intersects the feasible region.

By setting λ2 = λ3 = 0 and increasing it to λ2 = λ3 → ∞, a path of solutions will be created,
between the solution of the MF and our NRP autoencoder. The previous autoencoder methods use a
fixed λ2 > 0 and λ3 > 0, so their optimal solution lies somewhere on the path. The smaller (larger)
these hyper-parameters, the closer (farther away) the solution of the autoencoder-based methods will
be to the MF’s solution. We believe the neural representations act as the regularizer in previous
works since they are only used to keep U and V away from the MF’s optimal solution.
NRP with a direct structure. Here, our goal is to design a better network structure than autoen-
coders and combine it with the NRP structure. This (direct) structure is achieved by making two
modifications to our autoencoder structure. First, we remove the decoders from the structure, which
leads to saving around 50% of memory and faster optimization. Second, we use a set of fully
connected layers to predict the final rating, instead of the dot product. This makes our model more
expressive. The objective function can be achieved by removing Qrec(θ) from Eq. (3) and using a
multi-layer perceptron (instead of the dot product) to map the representations to the rating.
Experiments. We compare our NRP framework with the baselines and state-of-the-art methods
on two public datasets (ml100k [3] and ml1m [3]) and two real-world datasets (Amazon [4] and
Ichiba1). We report the root mean square error (RMSE) of each method in Table 1. DHA [8] and
aSDAE [2], which are autoencoder-based methods optimizing Eq. (1), achieve lower RMSE than
matrix factorization (MF). NRPDHA and NRPaSDAE, which apply the NRP framework to the encoder
and decoder structures of DHA [8] and aSDAE [2], outperform DHA and aSDAE, respectively. This
means that neural representations are better for prediction than regularization. Finally, NRPdirect
achieves the best results, with faster training and less memory usage compared to the autoecnoder-
based methods.

1https://rit.rakuten.co.jp/data_release/
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