
OPTIMIZING AFFINITY-BASED BINARY HASHING

USING AUXILIARY COORDINATES
Ramin Raziperchikolaei and Miguel Á. Carreira-Perpiñán, UC Merced

1 Binary hash functions for fast image retrieval

In K nearest neighbors problem, there are N training points in D-
dimensional space (usually D > 100) xi ∈ RD, i = 1, . . . , N . The goal is
to find the K nearest neighbors of a query point xq ∈ RD.

•Exact search in the original space is O(ND) in time and space.

A binary hash function h takes as input a high-dimensional vector
x ∈ RD and maps it to an b-bit vector z = h(x) ∈ {0, 1}b. The search is
done in this low-dimensional, binary space.

•The main goal is preserving the neighborhood, i.e., assign (dis)similar
codes to (dis)similar patterns.

1 111

1

11

11

1 11

00

00 000

00 00

0 000

000

Image Codes

XOR

XOR Hamming Distance = 1

Hamming Distance = 4

h(·)

h(·)

h(·)

Finding K nearest neighbors in Hamming space is more efficient:

•Time and space complexities would be O(Nb) instead of O(ND).

•Hamming Distance can be computed efficiently and fast using hard-
ware operations.

Suppose that N = 109,
D = 500 and b = 64

Search in Space Time
original space 2 TB 1 hour

Hamming space 8 GB 10 seconds

2 Affinity-based objective functions

Most hashing papers try to minimize the affinity-based objective func-
tions, which directly try to preserve the original similarities in the bi-
nary space.

minL(h) =
∑N

n,m=1L(h(xn),h(xm); ynm)

where xi ∈ RD is the i-th input data, h is the parameters of the hash
function, L(·) is a loss function that compares the codes for two im-
ages with the ground-truth value ynm that measures the affinity in the
original space between the two images xn and xm.
Examples of the loss function L(zn, zm; ynm):

KSH: (zTnzm − bynm)
2 BRE: (

1

b
‖zn − zm‖

2 − ynm)
2

If the hash function h was a continuous function, one could compute
derivatives over the parameters of h and then apply a nonlinear opti-
mization method.

3 Optimization using two-step approach

In binary hashing, optimization is much more difficult:

• the hash function must output binary values, hence the problem is not
just generally nonconvex, but also nonsmooth.

•While the gradients of the objective function do exist wrt W, they are
zero nearly everywhere.

Most hashing papers follow a simple but suboptimal approach:

•Define the objective function directly on the b-dimensional codes of
each image (instead of the hash functions) and optimizes it. This is
an NP-complete problem with Nb binary variables. This can be solved
approximately.

•Learn the hash function given the codes, by training several classi-
fiers.

The main issue of this approach is that it does not consider the relation
between the binary codes and the hash function in optimizing the codes.

4 Optimization using auxiliary coordinates

We show that all elements of the problem (binary codes and hash func-
tion) can be incorporated in a single algorithm that optimizes jointly over
them.

We use the method of auxiliary coordinates (MAC), a generic approach
to optimize nested functions. First, we introduce auxiliary coordinates
zn ∈ {−1,+1}b as the output of h(xn) and convert the problem for L(h)
into an equivalent constrained problem:

Lc(h,Z) =
∑N

n,m=1L(zn, zm; ynm) s.t. z1 = h(x1), · · · , zN = h(xN)

Now we apply the quadratic-penalty method:

LP (h,Z;µ) =
∑N

n,m=1L(zn, zm; ynm) + µ
∑N

n=1 ‖zn − h(xn)‖
2

where z1, . . . , zN ∈ {−1,+1}b. We start with a small µ and increase it
slowly. To optimize LP (h,Z;µ) we apply alternating optimization:

•Optimization over Z given h. This is an NP-complete problem over bN
binary variables and can be seen as a regularized binary embedding.

•Optimization over h given Z: minh
∑N

n=1 ‖zn − h(xn)‖
2. This is equivalent

to training b binary classifiers with data (X,Z).

The Z-step is still complex. Some recent works have proposed practical
approaches for this: (1) apply alternating optimization over the i-th bit
of all points given the remaining bits are fixed. This gives a binary qua-
dratic problem. (2) Solve this quadratic problem approximately (using
methods like GraphCut).

The two-step approach (TSH) corresponds to optimizing LP for µ → 0+.
In practice, we start from a very small value of µ (hence, initialize MAC
from the result of TSH).

Work supported by NSF award IIS–1423515

5 Advantages of optimizing the objective using MAC

• It optimizes jointly over the binary codes and the hash function in alternation
resulting in a better local optimum of the affinity-based loss.

• It performs better than previous, two-step approaches in both optimization and
information retrieval measures like precision and recall.

•Our framework makes it easy to design an optimization algorithm for a new
choice of loss function or hash function.

6 Experiments
{−1,+1}b×N

free binary
codes

codes from optimal
hash function

codes realizable
by hash functions

two-step codes

This figure shows the space of all possi-
ble binary codes and the feasible set for
linear hash functions. The contours cor-
respond to Lc defined only on codes.
The two-step method projects the free
codes into the feasible set.
MAC optimizes the codes and functions
jointly to find a better local optima.

lo
s
s

fu
n

c
ti
o

n
L

16 32 48

4

4.5

5

5.5
x 10

6

 

 

ker−MACcut

lin−MACcut

ker−cut

lin−cut

free codes

number of bits b

We achieve free codes by minimizing
Lc over the binary codes Z without any
constraint. Free codes are the starting
point of both cut and MACcut. Free
codes always achieve lower error than
the cut and MACcut.

MAC achieves lower error than the cut
using both linear and kernel hash func-
tion and using different loss functions.

lo
s
s

fu
n

c
ti
o

n
L

2 4 6 8 10 12 14

5.2

5.4

5.6

5.8

x 10
6

 

 

ker−MACcut
lin−MACcut
ker−MACquad
lin−MACquad
ker−cut
lin−cut
ker−quad
lin−quad
ker−KSH

iterations

p
re

c
is

io
n

600 700 800 900 1000
30

35

40

45

48

k retrieved points

We compare our proposed method MAC with the two step methods cut and quad,
that use quadratic surrogate and GraphCut methods in the optimization over codes.

MAC finds hash functions with significantly lower objective function values than the
two-step approaches.


