
An Ensemble Diversity Approach

to Binary Hashing

❦

Ramin Raziperchikolaei

Electrical Engineering and Computer Science

University of California, Merced

http://eecs.ucmerced.edu

Joint work with Miguel Á. Carreira-Perpiñán

http://eecs.ucmerced.edu
http://eecs.ucmerced.edu


Large Scale Image Retrieval

Searching a large database for images that are closest to a query.

This is the k nearest neighbors problem on N vectors in R
D with large

N and D.

Query
Database

Top retrieved image

p. 1



Binary Hash Functions

A binary hash function h takes as input a high-dimensional vector

x ∈ R
D and maps it to an b-bit vector z = h(x) ∈ {0, 1}b.

❖ Main goal: preserve neighbors, i.e., assign (dis)similar codes to
(dis)similar patterns.

❖ Hamming distance computed using XOR and then counting.

111

1 111

111

000

0 0

000

Image Binary Codes

XOR

Hamming Distance = 3

p. 2



Binary Hash Functions in Large Scale Image Retrieval

Scalability: we have millions or billions of high-dimensional images.

❖ Time complexity: O(Nb) instead of O(ND) with small constants.

✦ Bit operations to compute Hamming distance instead of floating
point operations to compute Euclidean distance.

❖ Space complexity: O(Nb) instead of O(ND) with small constants.

We can fit the binary codes of the entire dataset in memory, further
speeding up the search.

Ex: N = 1000 000 points, D = 300 and b = 32:

Space Time

Original space 1.2 GB 20 ms

Hamming space 4 MB 30 µs

p. 3



Affinity-Based Objective Functions

Affinity matrix W determines similar and dissimilar pairs of points
among the points in the training set X = (x1, . . . ,xN ), for example:

wnm =







1 xn and xm are similar

−1 xn and xm are dissimilar

0 We do not know

xn and xm are similar if:

{

label(xn) = label(xm) supervised dataset

‖xn − xm‖ < ǫ unsupervised dataset

Learn hash function h(·) ∈ {0, 1}b by minimizing the affinity-based
objective function:

minL(h) =
N
∑

n,m=1

L(h(xn),h(xm); wnm) where h(xn) ∈ {0, 1}b

L(·) is a loss function that compares the codes for two images with the
ground-truth value wnm.

p. 4



Optimizing Affinity-Based Objective Functions

Many hashing papers use affinity based objective function:
Laplacian loss (Spectral Hashing (Weiss et al. 2008), Hashing with Graphs (Liu et al. 2011), etc.):

L(h) =
N
∑

n,m=1

wnm ‖h(xn)− h(xm)‖
2

s.t.
h(X)Th(X) = NI

h(X)T1 = 0.

KSH Loss (Supervised Hashing with Kernels (Liu et al. 2012), Two-Step Hashing (Lin et al. 2013),

etc.):
L(h) =

N
∑

n,m=1

(h(xn)
T
h(xm)− b wnm)

2

Since the output of the hash function is binary, the objective function is
nonsmooth and difficult to optimize.
All the one bit hash functions, h = [h1, . . . , hb], are coupled to force
them to be different from each other. This further complicates the
optimization: Optimization takes a long time, it limits the number of points and bits in training, etc.

The goal of Most binary hashing wroks is to propose a new objective
function and an approximate way to optimize it. We propose a different
approach to learn good hash functions.

p. 5



Training Binary Hash Functions Independently

We propose to optimize each 1-bit hash function independently from
the rest.

This gives us several advantages:

❖ Optimization simplifies greatly: we deal with b independent problem each over N

binary codes rather than 1 problem with with Nb binary codes.

❖ This will lead to faster training and better accuracy.

❖ Training can be done in parallel.

But, how to make sure that the b hash functions are different from each
other and their combination results in good retrieval?

We will introduce diversity in a different way:
We use diversity techniques from the ensemble learning literature.

p. 6



A Single Bit Affinity-based Objective Function

Independent Laplacian Hashing (ILH):
We focus on the following objective function to learn a 1-bit hash
function h(·):

L(h) =
N
∑

n,m=1

wnm(h(xn)− h(xm))
2

We can use existing algorithms for optimizing affinity-based objective
functions, which becomes particularly effective with our 1-bit objective
functions. For example:

❖ (1) Relax the binary constraints, (2) solve the problem assuming that the hash functions are

continuous and (3) truncate the results to achieve the binary codes.

❖ (1) Replace the hash functions by binary codes zn = h(xn), (2) find the binary codes using binary

optimization techniques like Graph-Cut, and (3) Learn hash functions by training classifiers from input

to the binary codes.

We show that we can avoid trivial solutions by injecting diversity into
each hash function’s training using techniques inspired from classifier
ensemble learning.

p. 7



Adding Diversity with Ensemble Learning Techniques

If we optimize the same objective function b times, we get b identical
hash functions and we gain nothing over a single hash function.

A similar problem arises in ensemble learning: we want to train several
classifiers on the same training set. If the classifiers are all equal, we
gain nothing over a single classifier.

We consider the following diversity mechanisms from the ensemble
learning literature:

❖ Different initializations (ILHi): Each hash function is initialized randomly, which results

in different local optima for different hash functions.

❖ Different training sets (ILHt): Each hash function uses a training set of N points that is

different from the other hash functions.

❖ Different feature subsets (ILHf): Each hash function is trained on a random subset of

1 ≤ d ≤ D features.

p. 8



Advantages of Independent Laplacian Hashing

❖ b binary optimizations over N binary variables each is generally
easier than one binary optimization over bN variables.

❖ Training the b functions can be parallelized perfectly.

❖ To get the solution for b+ 1 bits we just need to take a solution with
b bits and add one more bit.

✦ This is helpful for model selection. How many bits do we need in
binary hashing? We can maximize the precision on a test set
over b (cross-validation).

✦ Computationally easy: simply keep adding bits until the test
precision stabilizes.

❖ For ILHf, both the training and test time are lower than if using all D
features for each hash function. The test runtime for a query is d/D
smaller.

p. 9



Experiments: Diversity Mechanisms with ILH

32 bits 64 bits 128 bits

p
re

c
is

io
n

0.2 0.5 1 2

x 10
4

30

35

40

45

 

 

ILHi
ILHt
ILHf
ILHitf
KSH

N
0.2 0.5 1 2

x 10
4

30

35

40

45

 

 

ILHi
ILHt
ILHf
ILHitf
KSH

N
0.2 0.5 1 2

x 10
4

30

35

40

45

 

 

ILHi
ILHt
ILHf
ILHitf
KSH

N

CIFAR dataset, N = 58 000 training/ 2 000 test images, D = 320 SIFT features.

As a device to make the hash functions different and produce good
retrival, the diversity mechanisms work as well as or quite better than
using optimization.
The clearly best diversity mechanism is ILHt, which works better than
the other mechanisms, even when combined with them, and
significantly better than KSH.

p. 10



Preformance as a Function of Number of Bits

p
re

c
is

io
n

0 40 80 120 160 200
10

20

30

40

45 ILHt

KSH LSH

tPCA

number of bits b

For KSH the variance is large (compared to ILHt) and the precision
barely increases after b = 80.

For ILHt, the precision increases nearly monotonically and continues
increasing beyond b = 200 bits. p. 11



ILHt Compared with Other Binary Hashing Methods

b = 32 b = 64 b = 128
p

re
c
is

io
n

500 600 700 800 900 1000
20

25

30

35

40

45

 

 

ILHt
KSHcut
KSH
STH
ITQ−CCA
LSH
BRE

k
500 600 700 800 900 1000

20

25

30

35

40

45

k
500 600 700 800 900 1000

20

25

30

35

40

45

k

p
re

c
is

io
n

20 40 60 80 100
10

20

30

40

45

 

 

ILHt
KSHcut
KSH
STH
ITQ−CCA
LSH
BRE

recall
20 40 60 80 100

10

20

30

40

45

recall
20 40 60 80 100

10

20

30

40

45

recall

CIFAR dataset, N = 58 000 training/ 2 000 test images, D = 320 SIFT features.

Groundtruth: points with the same labels as the query

ILHt beats state-of-the-art methods, particularly as the number of bits b
increases.

p. 12



Conclusion

❖ Most hashing papers try to learn good hash functions by minimizing
a sophisticated affinity-based objective function that couples all the
binary codes. This results in a very difficult, slow optimization.

❖ This is not necessary! We have shown that the hash functions can
be trained independently:

✦ Much simpler optimization. Over N binary codes instead of Nb.

✦ Training is fast and parallel. b 1-bit hash functions trained independently.

✦ Performance is competitive or even quite better than the
state-of-the-art.

❖ We need diversity techniques to avoid trivial solutions:
✦ ILHi: different initialization.

✦ ILHf: different sets of features in training hash functions.

✦ ILHt: different subsets of points and works best.

Partly supported by NSF award IIS–1423515.

p. 13



Experiments: Diversity Mechanisms with ILH (Cont.)

ILHf ILHitf ILHt Incremental ILHt

p
re

c
is

io
n

0.01 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

 

 

d/D

b = 32

b = 64

b = 128

0.01 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

 

 

d/D

b = 32

b = 64

b = 128

32 64 128
10

20

30

40

50

60

70

80

 

 

disjoint
random sampling
bootsrtap

number of bits b
0 40 80 120 160 200

10

20

30

40

50

60

70

80

 

 

ILHt
KSHcut
tPCA
LSH

number of bits b

INFMNIST dataset, N = 1000 000 training/ 2 000 test images, D = 784 raw pixel features.

(panels 1–2) shows the results in ILHf of varying the number of features 1 ≤ d ≤ D used by each hash

function. The highest precision is achieved with a proportion d/D ≈ 30% for ILHf.

(panel 3) shows the results of using bootstrapped (samples with replacement from 5 000 points) instead of

disjoint training sets for ILHt. As expected, the latter is consistently better.

(panel 4) shows the precision (in the test set) as a function of the number of bits b for ILHt, where the

solution for b+ 1 bits is obtained by adding a new bit to the solution for b.

❖ For KSHcut the variance is large (compared to ILHt) and the precision barely increases after b = 30.

❖ For ILHt, the precision increases nearly monotonically and continues increasing beyond b = 200 bits.

p. 14



Comparison with Other Binary Hashing Methods

b = 32 b = 64 b = 128
p

re
c
is

io
n

6000 7000 8000 9000 10000
10

20

30

40

 

 

ILHt
KSHcut
KSH
STH
ITQ
BA
tPCA
SH
LSH
BRE

k
6000 7000 8000 9000 10000
10

20

30

40

k
6000 7000 8000 9000 10000
10

20

30

40

k

p
re

c
is

io
n

20 40 60 80 100
0

20

40

60

80

 

 

ILHt
KSHcut
KSH
STH
ITQ
BA
tPCA
SH
LSH
BRE

recall
20 40 60 80 100

0

20

40

60

80

recall
20 40 60 80 100

0

20

40

60

80

recall

FLICKR dataset, N = 1000 000 training/ 10 000 test images, D = 150 edge histogram features.

Groundtruth: First K = 10 000 nearest neighbors of the query in the original space.

ILHt beats state-of-the-art methods, particularly as the number of bits b increases.

p. 15


	Large Scale Image Retrieval
	Binary Hash Functions
	Binary Hash Functions in Large Scale Image Retrieval
	Affinity-Based Objective Functions
	Optimizing Affinity-Based Objective Functions
	Training Binary Hash Functions Independently
	A Single Bit Affinity-based Objective Function
	Adding Diversity with Ensemble Learning Techniques
	Advantages of Independent Laplacian Hashing 
	Experiments: Diversity Mechanisms with ILH
	Preformance as a Function of Number of Bits
	ILHt Compared with Other Binary Hashing Methods
	Conclusion
	Experiments: Diversity Mechanisms with ILH (Cont.)
	Comparison with Other Binary Hashing Methods

