
Hashing with Binary Autoencoders

❦

Ramin Raziperchikolaei

Electrical Engineering and Computer Science

University of California, Merced

http://eecs.ucmerced.edu

Joint work with Miguel Á. Carreira-Perpiñán

http://eecs.ucmerced.edu
http://eecs.ucmerced.edu

Large Scale Image Retrieval

Searching a large database for images that are closest to a query
image.

Query
Database

Top retrieved image

p. 1

Binary Hash Functions

A binary hash function h takes as input a high-dimensional vector

x ∈ R
D and maps it to an L-bit vector z = h(x) ∈ {0, 1}L.

❖ Main goal: preserve neighbors, i.e., assign (dis)similar codes to
(dis)similar patterns.

❖ Hamming distance computed using XOR and then counting.

111

1 111

111

000

0 0

000

Image Binary Codes

XOR

Hamming Distance = 3

p. 2

Binary Hash Functions in Large Scale Image Retrieval

Scalability: we have millions or billions of high-dimensional images.

❖ Time complexity: O(NL) instead of O(ND) with small constants.

✦ Bit operations to compute Hamming distance instead of floating
point operations to compute Euclidean distance.

❖ Space complexity: O(NL) instead of O(ND) with small constants.

Ex: N = 1000 000 points take

✦ 1.2 Gigabytes of memory if D = 300 floats

✦ 4 Megabytes of memory if L = 32 bits

We can fit the binary codes of the entire dataset in memory, further
speeding up the search.

p. 3

Previous Works on Binary Hashing

Binary hash functions have attained a lot of attention in recent years:

❖ Locality-Sensitive Hashing (Indyk and Motwani 2008)

❖ Spectral Hashing (Weiss et al. 2008)

❖ Kernelized Locality-Sensitive Hashing (Kulis and Grauman 2009)

❖ Semantic Hashing (Salakhutdinov and Hinton 2009)

❖ Iterative Quantization (Gong and Lazebnik 2011)

❖ Semi-supervised hashing for scalable image retrieval (Wang et al. 2012)

❖ Hashing With Graphs (Liu et al. 2011)

❖ Spherical Hashing (Heo et al. 2012)

Most of the methods find the binary codes in two steps:

1. Relax the binary constraints and solve a continuous problem.

2. Binarize these continuous codes to obtain binary codes.

This is a suboptimal, “filter” approach: find approximate binary codes
first, then find the hash function. We seek an optimal, “wrapper”
approach: optimize over the binary codes and hash function jointly.

p. 4

Our Hashing Models: Binary Autoencoder

We consider binary autoencoders as our hashing model:

❖ The encoder h:x→ z maps a real vector x ∈ R
D onto a

low-dimensional binary vector z ∈ {0, 1}L (with L < D).
This will be our hash function.

❖ The decoder f : z→ x maps z back to R
D in order to reconstruct x.

The optimal autoencoder will preserve neighborhoods to some extent.

We want to optimize the reconstruction error jointly over h and f :

EBA(h, f) =
N
∑

n=1

‖xn − f(h(xn))‖
2

s.t. h(xn) ∈ {0, 1}
L.

We consider a linear decoder and a thresholded linear encoder (hash
function) h(x) = σ(Wx) where σ(t) is a step function elementwise.

p. 5

Optimization of Binary Autoencoders: “filter” approach

A simple but suboptimal approach:

1. Minimize the following objective function over linear functions f , g:

E(g, f) =
N
∑

n=1

‖xn − f(g(xn))‖
2

which is equivalent to doing PCA on the input data.

2. Binarize the codes Z = g(X) by an optimal rotation:

E(B,R) = ‖B−RZ‖2F s.t. RTR = I, B ∈ {0, 1}LN

The resulting hash function is h(x) = σ(Rg(x)).
This is what the Iterative Quantization algorithm (ITQ, Gong et al. 2011), a
leading binary hashing method, does.

Can we obtain better hash functions by doing a better optimization, i.e.,
respecting the binary constraints on the codes?

p. 6

Optimization of Binary Autoencoders using MAC

Minimize the autoencoder objective function to find the hash function:

EBA(h, f) =
N
∑

n=1

‖xn − f(h(xn))‖
2

s.t. h(xn) ∈ {0, 1}
L

We use the method of auxiliary coordinates (MAC) (Carreira-Perpiñán & Wang

2012, 2014). The idea is to break nested functional relationships judiciously
by introducing variables as equality constraints, apply a penalty method
and use alternating optimization.

1. We introduce as auxiliary coordinates the outputs of h, i.e., the
codes for each of the N input patterns and obtain a constrained
problem:

min
h,f ,Z

N
∑

n=1

‖xn − f(zn)‖
2

s.t. zn = h(xn), zn ∈ {0, 1}
L, n = 1, . . . , N.

p. 7

Optimization of Binary Autoencoders using MAC (cont.)

2. Apply the quadratic-penalty method (can also apply augmented Lagrangian):

EQ(h, f ,Z;µ) =

N
∑

n=1

(

‖xn − f(zn)‖
2 + µ ‖zn − h(xn)‖

2
)

s.t.
{

zn ∈ {0, 1}
L

n = 1, . . . , N.

We start with a small µ and increase it slowly towards infinity.

3. To minimize EQ(h, f ,Z;µ), we apply alternating optimization. The

algorithm learns the hash function h and the decoder f given the
current codes, and learns the patterns’ codes given h and f :

❖ Over (h, f) for fixed Z, we obtain L+ 1 independent problems for
each of the L single-bit hash functions, and for f .

❖ Over Z for fixed (h, f), the problem separates for each of the N

codes. The optimal code vector for pattern xn tries to be close to
the prediction h(xn) while reconstructing xn well.

We have to solve each of these steps.
p. 8

Optimization over (h, f) for fixed Z (decoder/encoder given codes)

We have to minimize the following over the linear decoder f and the
hash function h (where h(x) = σ(Wx)):

EQ(h, f ,Z;µ) =

N
∑

n=1

(

‖xn − f(zn)‖
2 + µ ‖zn − h(xn)‖

2
)

s.t.
{

zn ∈ {0, 1}
L

n = 1, . . . , N.

This is easily done by reusing existing algorithms for regression/classif.

Fit f to (Z,X): a simple linear regression with data (Z,X):

min
f

N
∑

n=1

‖xn − f(zn)‖
2
.

Fit h to (X,Z): L separate binary classifications with data (X,Z·l):

min
W

N
∑

n=1

‖zn − σ(Wxn)‖
2 =

L
∑

l=1

min
wl

N
∑

n=1

(znl − σ(wl
Txn))

2.

We approximately solve each with a binary linear SVM.
p. 9

Optimization over Z for fixed (h, f) (adjust codes given encoder/decoder)

Fit Z given (f ,h): This is a binary optimization on NL variables, but it
separates into N independent optimizations each on only L variables:

min
zn

e(zn) = ‖xn − f(zn)‖
2 + µ ‖zn − h(xn)‖

2
s.t. zn ∈ {0, 1}

L

This is a quadratic objective function on binary variables, which is
NP-complete in general, but L is small.

❖ With L . 16 we can afford an exhaustive search over the 2L codes.
Speedups: try h(xn) first; use bit operations, necessary/sufficient conditions, parallel processing. . .

❖ For larger L, we use alternating optimization over groups of g bits.
How to initialize zn? We have used the following two approaches:

✦ Warm start: Initialize zn to the code found in the previous
iteration’s Z step.

✦ Solve the relaxed problem on zn ∈ [0, 1]L and then truncate it.
We use an ADMM algorithm, caching one matrix factorization for all n = 1, . . . , N .

p. 10

Optimization of Binary Autoencoders using MAC (cont.)

2 4 6 8 10 12

2

4

6

8

10

number of processors

s
p

e
e

d
u

p

The steps can be parallelized:

❖ Z step: N independent problems,
one per binary code vector zn.

❖ f and h steps are independent.
h step: L independent problems,
one per binary SVM.

Schedule for the penalty parameter µ:

❖ With exact steps, the algorithm terminates at a finite µ.
This occurs when the solution of the Z step equals the output of the hash function, and gives a

practical termination criterion.

❖ We start with a small µ and increase it slowly until termination.

p. 11

Summary of the Binary Autoencoder MAC Algorithm

input XD×N = (x1, . . . ,xN), L ∈ N

Initialize ZL×N = (z1, . . . , zN) ∈ {0, 1}
LN

for µ = 0 < µ1 < · · · < µ∞

for l = 1, . . . , L h step

hl ← fit SVM to (X,Z·l)

f ← least-squares fit to (Z,X) f step

for n = 1, . . . , N Z step

zn ← argminzn∈{0,1}L ‖yn − f(zn)‖
2 + µ ‖zn − h(xn)‖

2

if Z = h(X) then stop

return h, Z = h(X)

Repeatedly solve: classification (h), regression (f), binarization (Z).
p. 12

Experiment: Initialization of Z Step

If using alternating optimization in the Z step (in groups of g bits), we
need an initial zn. Initializing zn using the truncated relaxed solution
achieves better local optima than using warm starts.
Also, using small g (≈ 1) is fastest while giving good optima.

5 20 40 55
1.66

1.68

1.7

1.72

1.74x 10
4

exact

warm
start

relaxedN
e

s
te

d
o

b
je

c
ti
ve

fu
n

c
ti
o

n
∑

N n
=
1
‖
x
n
−
f
(h

(x
n
))
‖2

iterations

g = 1
g = 2
g = 4
g = 8
g = 16

N = 50 000 images of CIFAR dataset, D = 320 GIST features, L = 16 bits.
p. 13

Optimizing Binary Autoencoders Improves Precision

NUS-WIDE-LITE dataset, N = 27 807 training/ 27 808 test images,
D = 128 wavelet features.

autoencoder error precision within r ≤ 2 k = 50 nearest neighbors

8 16 24 32
0.6

0.8

1

1.2

1.4

1.6x 10
5

e
rr

o
r

number of bits L
8 16 24 32

0

10

20

30

BA
BFA
ITQ
tPCA

number of bits L

p
re

c
is

io
n

8 16 24 32
0

5

10

15

20

number of bits L

p
re

c
is

io
n

ITQ and tPCA use a filter approach (suboptimal): They solve the
continuous problem and truncate the solution.
BA uses a wrapper approach (optimal): It optimizes the objective
function respecting the binary nature of the codes.
BA achieves lower reconstruction error and also better precision/recall.

p. 14

Comparison with other hashing algorithms

NUS-WIDE dataset: 269 648 high resolution color images in 81
concepts; training/test N = 161 789/107 859, D = 128 wavelet features.
Ground truth: K = 500 nearest neighbors of each query point:

K NN precision precision within r ≤ 1 precision within r ≤ 2

8 16 24 32
0

5

10

15

20

p
re

c
is

io
n

number of bits L
8 16 24 32

0

10

20

30

40

number of bits L
8 16 24 32

0

10

20

30

40

BA
BFA
ITQ
tPCA
SPH
KLSH
SH
AGH

number of bits L

A well-optimized binary autoencoder with a linear hash function
consistently beats state-of-the-art methods using more sophisticated
objectives and (nonlinear) hash functions.
Runtime with L = 32 bits: a few hours.

p. 15

Conclusion

❖ A fundamental difficulty in learning hash functions is binary
optimization.

✦ Most existing methods relax the problem and find its continuous
solution. Then, they threshold the result to obtain binary codes,
which is sub-optimal.

✦ Using the method of auxiliary coordinates, we can do the
optimization correctly and efficiently for binary autoencoders.

★ Encoder (hash function): train one SVM per bit.
★ Decoder: solve a linear regression problem.
★ Highly parallel.

❖ Remarkably, with proper optimization, a simple model (autoencoder
with linear encoder and decoder) beats state-of-the-art methods
using nonlinear hash functions and/or better objective functions.

Partly supported by NSF award IIS–1423515.

p. 16

	Large Scale Image Retrieval
	Binary Hash Functions
	Binary Hash Functions in Large Scale Image Retrieval
	Previous Works on Binary Hashing
	Our Hashing Models: Binary Autoencoder
	Optimization of Binary Autoencoders: ``filter'' approach
	Optimization of Binary Autoencoders using MAC
	Optimization of Binary Autoencoders using MAC (cont.)
	Optimization over $(h ,�)$
for fixed Z {	iny (decoder/encoder given codes)}
	Optimization over $Z $ for fixed $(h ,�)$
{	iny (adjust codes given encoder/decoder)}
	Optimization of Binary Autoencoders using MAC (cont.)
	Summary of the Binary Autoencoder MAC Algorithm
	Experiment: Initialization of $Z $ Step
	Optimizing Binary Autoencoders Improves Precision
	Comparison with other hashing algorithms
	Conclusion

