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1 Abstract

An attractive approach for fast search in image databases is
binary hashing, where each high-dimensional, real-valued im-
age is mapped onto a low-dimensional, binary vector and the
search is done in this binary space. Finding the optimal hash
function is difficult because it involves binary constraints, and
most approaches approximate the optimization by relaxing the
constraints and then binarizing the result. Here, we focus on
the binary autoencoder model, which seeks to reconstruct an
image from the binary code produced by the hash function. We
show that the optimization can be simplified with the method of
auxiliary coordinates. This reformulates the optimization as al-
ternating two easier steps: one that learns the encoder and de-
coder separately, and one that optimizes the code for each im-
age. Image retrieval experiments show the resulting hash func-
tion outperforms or is competitive with state-of-the-art methods
for binary hashing.
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2 Binary hash functions

In K nearest neighbors problem, there are N training points in D-dimensional
space (usually D > 100) xi ∈ RD, i = 1, . . . , N and the goal is finding the K

nearest neighbors of a query point xq ∈ RD.

•Exact search in the original space is O(ND) in both time and space.

A binary hash function h takes as input a high-dimensional vector x ∈ RD

and maps it to an L-bit vector z = h(x) ∈ {0, 1}L. The search is done in this
low-dimensional, binary space.

•The main goal is preserving the neighborhood, i.e., assign (dis)similar
codes to (dis)similar patterns.

•Hamming distance computed using XOR and then counting.

•Time complexity is O(NL) instead of O(ND) with smaller constants be-
cause of efficient hardware operations with bits.

•Space complexity is O(NL) instead of O(ND). If we have N = 1 000 000, D =
300 and L = 32, we need 4 MB instead of 1.2 GB memory to store the data.

3 Previous works on binary hashing

Optimizing the objective functions that have been used in dimensionality
reduction algorithms is difficult because the codes are binary. Most of the
methods use a suboptimal, “filter” approach to find the binary codes:

1. Relax the binary constraints and solve a continuous problem.

2. Binarize the continuous codes using approaches such as:

•Truncate the real values using threshold zero.

•Find the best threshold for truncation.

•Rotate the real vectors to minimize the quantization loss.

3. Fit a mapping to (patterns x,codes z) to obtain the hash function h.

We seek an optimal, “wrapper” approach: optimize the objective function
jointly over linear mappings and thresholds, respecting the binary con-
straints while learning h.

4 Our hashing model: Binary Autoencoder

We consider binary autoencoders as our hashing model:

EBA(h, f) =

N
∑

n=1

‖xn − f(h(xn))‖
2 s.t. h(xn) ∈ {0, 1}L.

•The encoder h:x → z maps a real vector x ∈ RD onto a low-dimensional
binary vector z ∈ {0, 1}L (with L < D).

•The decoder f : z → x maps z back to RD in an effort to reconstruct x.

We use the method of auxiliary coordinates (MAC). First, we convert the nested
problem for EBA(h, f) into an equivalent constrained problem:

min
h,f ,Z

N
∑

n=1

‖xn − f(zn)‖
2 s.t. zn = h(xn), zn ∈ {0, 1}L, n = 1, . . . , N

that is not nested, where zn are the auxiliary coordinates for the output of h(xn).
Now we apply the quadratic-penalty method:

EQ(h, f ,Z;µ) =

N
∑

n=1

(

‖xn − f(zn)‖
2 + µ ‖zn − h(xn)‖

2
)

s.t. zn ∈ {0, 1}L, n = 1, . . . , N

where we start with a small µ and increase it slowly. To optimize EQ we apply
alternating optimization:

•Over f for fixed Z:
∑N

n=1 ‖xn − f(zn)‖
2. With a linear decoder this is a straight-

forward linear regression with data (Z,X).

•Over h for fixed Z: minh
∑N

n=1 ‖zn − h(xn)‖
2. This separates for each bit l =

1 . . . L. The subproblem for each bit is a binary classification problem with
data (X,Z·l) using the number of misclassified patterns as loss function.

•Over Z for fixed (h, f): minzn e(zn) = ‖x− f(zn)‖
2 + µ ‖zn − h(x)‖2. This is a bi-

nary optimization on NL variables, but it separates into N independent opti-
mizations each on only L variables. With L . 16 we can afford an exhaustive
search over the 2L codes. For larger L, we use alternating optimization over
groups of g bits.
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We have used the following two ap-
proaches to initialize zn in the Z step:

•Warm start: Initialize zn to the code
found in the previous iteration’s Z

step.

•Solve the relaxed problem on zn ∈
[0, 1]L and then truncate it.

The latter achieves better local optima
than using warm starts. Using small g
(≈ 1) is fastest and gives good optima.
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The algorithm is highly parallel:

•For fixed Z we have L + 1 inde-
pendent problems for each of the L

single-bit hash functions, and for f .

•For fixed h and f we have N inde-
pendent optimization problems each
over L variables.

5 Experiments

1. Optimizing Binary Autoencoders Improves Precision

NUS-WIDE-LITE dataset, N = 27 807 training/ 27 808 test images.
BA achieves lower reconstruction error and also better precision/recall using MAC than
using a suboptimal, “filter” optimization as in ITQ (which first estimates continuous codes,
then binarizes them, then fits the hash function to them).
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2. Comparison with other hashing algorithms

NUS-WIDE dataset: 269 648 high resolution color images in 81 concepts; training/test N =
161 789/107 859, D = 128 wavelet features.
A well-optimized (using MAC) binary autoencoder with a linear hash function consistently
beats state-of-the-art methods using other objectives/(nonlinear) hash functions.

K = 500 NN precision precision within r ≤ 1
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