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ABSTRACT
Neural networks have become popular recently in recommendation
systems to extract user and item representations. Most previous
works follow a two-branch setting, where user and item networks
learn user and item representations in the first and second branches,
respectively. In the item cold-start problem, where the usage pat-
terns of the items do not exist, the user network uses ID/interaction
vector as the input and the item network uses the item side infor-
mation (content) as the input. In this paper, we will show that by
using this structure, two representations are learned for each item
in the training set; one is the output of the item network and the
other one is hidden inside the user network and is used for learning
user representations. Learning two representations makes training
slower and optimization more difficult. We propose to unify the
two representations and only use the one generated by the item
network. Also, we will show how attention mechanisms fit in our
setting and how they can improve the quality of the representations.
Our results on public and real-world datasets show that our ap-
proach converges faster, achieves higher recall in fewer iterations,
and is more robust to the changes in the number of training samples
compared to the previous works.
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1 INTRODUCTION
Recommendation systems (RSs) help users find what they are in-
terested in from a large set of items and products. This is usually
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done by designing an algorithm that takes a user and an item and
predicts their similarity or matching score.

RSs utilize various input sources to fulfill their task. One impor-
tant source of information is the previous feedback (interaction)
of the users on items, which could be explicit (such as rating) or
implicit (such as clicked or purchased). Another source of informa-
tion is the user and item side information; the user side information
includes age, gender, occupation, etc., and the item side information
includes title, price, genre, etc [20].

The two main approaches in RSs are collaborative filtering (CF)
[15, 26] and content-based filtering (CBF). CF only uses the feedback
history to predict the unseen interactions between the users and
items. Matrix factorization (MF) [15] is the most popular method in
the CF approaches, which maps users and items into a latent space
and estimates their similarity by the dot product. The performance
of the CF methods drops when the feedback is sparse. CF becomes
inapplicable to the cold-start problems, where we need to predict
scores for a new user or item without any previous feedback. CBF
uses the user and item’s side information to make a prediction.
The advantage of CBF is that it is applicable as long as the side
information is available, and thus can be used for the cold-start
problems. When the feedback is available, however, it is known
that CF methods usually perform better than CBF methods [24].

Hybrid methods have been proposed to overcome the limitations
of both CF and CBF. They use all the available sources of informa-
tion by mapping the side information and the feedback to separate
low-dimensional representations and combine them to predict the
final interaction [6, 19, 25, 33]. These methods have shown their
effectiveness for cold-start recommendations. In this paper, we pro-
pose a new hybrid method to solve complete item-cold start problems.
In this setting, the test items are completely cold-start, which means
that there is no feedback history for them and we only have access
to their side information.In this paper, we focus on predicting the
implicit feedback of the users on the cold-start items. Note that our
method can easily be modified to predict the explicit feedback or
to solve the user cold-start problem.

Hybrid cold-start models have at least two separate branches
[6, 17, 23, 29]. In the first branch, the item side information is used
as the input and mapped to a low-dimensional representation. In
the second branch, either user ID [23] or user interaction vector
[6, 25, 34] is used as the input to a model which generates user
representations. After neural networks became widely used for
representation learning, hybrid RSs also adopted neural networks
to generate user/item representations [6, 17, 23, 25, 29, 33]. Fig. 1
shows the general structure for hybrid cold-start models.

In this paper, we empirically show that the model with the user
interaction vector as the input achieves better recall much faster
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(in fewer training iterations) than the model with the user ID as
the input. We investigate this and explain the reason, which comes
from the hidden item embedding matrix inside the model with the
interaction vector as the input. The hidden embeddings improve
the quality of the user representation at initialization.

We propose a method that can achieve even better recall than the
model with the interaction vector as the input using fewer training
iterations. Our method shares the neural item representations with
the hidden item embeddings. By doing so, the item embeddings
become a function of their side information and their similarity
will be preserved (to some extent) even at the initialization. This
will also improve the quality of the user representations and will
lead to better results in fewer iterations.

Furthermore, by reformulating our main objective function, we
show how the initial user representation is a summation of the
user’s neighbor representations. We extend our idea by using the
attention mechanism to weigh the neighbor representations differ-
ently based on their similarity to the test items.

We have conducted extensive experiments on the public and
real-world datasets. These experiments confirm the advantages of
our approach over the previous works, which include: 1) achieving
faster convergence and better recall in a fewer number of training
iterations, 2) performing well even when using a smaller number of
training data, and 3) improving the performance with the attention
mechanism.

2 PREVIOUS WORKS
2.1 Matrix factorization and

neighborhood-based methods
Matrix factorization and neighbor-based methods are the two ma-
jor collaborative filtering approaches. Several matrix factorization
techniques have been proposed, including singular value decompo-
sition, probabilistic latent semantic analysis [13] and probabilistic
matrix factorization [22]. Neighbor-basedmethods [2] predict users’
unseen preference on items based on the known preferences on the
similar items. Takács et al. [26] investigated various regularization
scenarios for the matrix factorization approach and then introduced
two neighbor-based approaches. Koren [14] built a combinedmodel,
which smoothly merges matrix factorization and neighborhood
models.

Due to the immense success of deep neural networks, many
neural network-based recommender systems have been proposed.
He et al. [12] proposed neural collaborative filtering (NCF) that
replaces the dot product in collaborative filtering with the deep
neural networks. Later, its variants were studied, which take ei-
ther user/item interaction vectors [7, 32] or user/item ID [10, 12]
as inputs. However, CF and NCF require interaction matrices for
training and only work in the warm-start setting.

2.2 Attentions in recommendation systems
Attention mechanisms, which are shown to improve the perfor-
mance of natural language processing and computer vision tasks,
have been studied in recommendation tasks as well. The goal of
attention mechanisms is to focus on the specific input source which
contributes most to the recommendations. Attentive collaborative
filtering (ACF) [4] was proposed for multimedia recommendations.

ACF uses component-level attention to give more weight to the
informative regions in an image. He et al. [11] proposed neural at-
tentive item similarity (NAIS), which uses the attention mechanism
to distinguish the important items in the user’s past interactions.
However, NAIS uses item IDs and item embeddings, which makes
its approach inapplicable to the item cold-start problems. Shi et al.
[23] used the attention mechanism to determine the importance of
different information sources in making prediction. This approach
is inapplicable in our setting since there is only one source of infor-
mation per user and item at test time.

2.3 Recommendation systems for cold-start
problems

Various hybrid models have been proposed to tackle the cold-start
problem. Collaborative topic regression (CTR) [30] and its vari-
ants [9, 31] have been one of the popular structures. Based on the
availability of feedback information, CTR interpolates between
content-based representations generated from side information by
latent Dirichlet allocation (LDA) [3] and feedback-based represen-
tations generated from interaction matrices by weighted matrix
factorization (WMF).

Recent hybrid methods utilize neural networks to learn repre-
sentations from side information. To solve the cold-start problem
in the music recommendation system, DeepMusic [27] creates mul-
tiple embeddings based on the contents (e.g., artist biographies and
audio spectrogram) using neural networks. Li et al. [17] combined
probabilistic matrix factorization (PMF) with the marginalized de-
noising autoencoders (mDA) [5]. Dong et al. [6] combined stacked
denoising autoencoder (aSDAE) [28] and matrix factorization to
integrate side information. Zhang et al. [33] merged contractive au-
toencoders [21] and the latent factor models like SVD. Li et al. [18]
adopted independent encoder-decoder architectures for different
data sources, such as numerical, categorical, and sequential data.

Attentional collaborate and content models (ACCM) [23] ap-
plies attention mechanisms to hybrid recommender systems. The
attention mechanism is used to adjust the importance of the input
sources. For cold-start items whose feedback information is missing,
ACCM pays more attention to the item’s side information to make
predictions.

Some works focus on integrating side information and the pref-
erence representations generated by the feedback information.
Dropoutnet [29] takes preference representation and side infor-
mation as the inputs for items. For a cold-start item, the values
of preference representations are zero since past interactions are
missing. CB2CF [1] learns a mapping function from side informa-
tion to the preference representation. Both Dropoutnet and CB2CF
need to first learn preference representations by applying a ma-
trix factorization algorithm to the interaction matrix. As a result,
the recommendation performances of Dropoutnet and CB2CF are
upper-bounded by the performance of matrix factorization, while
the performance of a matrix factorization algorithm heavily de-
pends on the number of non-zero elements in the matrix. It means
that, with an extremely sparse interaction matrix, Dropoutnet and
CB2CF both have poor recommendation performance.

Recently, researchers have explores meta-learning for item cold-
start problems. Based on the MAML framework [8], Meta-Learned
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User Preference Estimator for Cold-Start Recommendation (MELU)
has been proposed in [16]. Treating each item as a task of meta-
learning, MELU can rapidly adapt the learned recommender system
to new items with a small number of new interactions.

3 NEURAL NETWORK-BASED METHODS IN
THE COLD-START PROBLEM

In this section, we review how the previous neural network-based
methods work in the cold-start setting. Let us introduce the nota-
tions first. We denote the sparse interaction matrix by R ∈ Rm×n ,
where m and n are the number of users and items, respectively.
In the interaction matrix, Rjk = 1 means user j interacted with
(purchased) item k , and Rjk = 0 means the interaction is unknown.
The s-dimensional side information of all the n items are denoted
by X ∈ Rn×s . The ith row of a matrix H is shown by Hi, : and the
jth column is shown by H:, j .

In our setting, there is no user side information and there is no
item feedback at test time. In this setting, the previous cold-start
or hybrid methods will have a two-branches structure as shown
in Fig. 1 [6, 17, 23, 29, 33]. The user representation is created in
the user branch and the item representation is created in the item
branch. A prediction function takes the two representations and
maps them to a number which shows the interest of the user in
that item. In the following, we explain each part of this structure
in more detail.

For the items, a multi-layer perceptron (MLP), denoted by gi (),
takes the item side information of the kth item Xk, : and maps it to
a di -dimensional representation zik , i.e., z

i
k = gi (Xk, :) ∈ R

d i .
For the users, the input source is either their IDs or interaction

vectors. In the case of ID as the input, an embedding layer is used to
extract the jth user representation from the jth row of an embedding
matrix. First, the user ID is converted to a one-hot-encoding vector
of sizem (number of users). For user j , this vector is denoted by Iuj ∈

Rm , where the jth entry of Iuj is 1 and the rest are 0. Then, this vector
is multiplied by a user embedding matrix Eu ∈ Rm×du to give us
the du -dimensional representation vector zuj , i.e., z

u
j = Iuj E

u ∈ Rd
u
.

In the case of the interaction vector as the input, for the jth user,
a multi-layer perceptron takes the jth row of the interaction matrix
and maps it to a du -dimensional representation:

zuj = gu (Rj, :) = σ (. . . σ (σ (Rj, :Wu
1 )W

u
2 ) . . .W

u
L ), (1)

where σ () is an activation function andWu
l is the weight matrix of

the lth layer.
Different kinds of loss functions have been used in the literature

to train the model and learn the representations. Here are two
examples:

lcontrastive =
∑

j,k ∈S+
| |zuj − zik | |

2 + λ
∑

j,k ∈S−

max (0,md − ||zuj − zik | |)
2

ldot-mse =
∑

j,k ∈S+∪S−

| |(zuj )
T zik − Ri j | |

2 (2)

wheremd is a margin. S+ is a set of positive pairs of users and item,
where (j,k) ∈ S+ if user j interacted with the item k (with Rjk = 1).
S− is a set of negative pairs of users and items, which are randomly
selected from the non-positive pairs (with Rjk = 0). Contrastive
loss tries to make the distance between the representation of the

similar/dissimilar users and items small/big. In the dot-mse loss
function, the interaction value (0 or 1) is estimated by the dot
product of the representations.

In the above two loss functions, the assumption is that the user
and item representations have the same dimension, i.e., du = di . To
avoid such an assumption, one can concatenate the two representa-
tions and use an MLP to predict the interaction score. The focus of
this paper is not on the exact form of the loss function and we use
the ones in Eq. (2)

4 OUR PROPOSED METHOD: SHARED
NEURAL ITEM REPRESENTATION

Our approach is motivated by the fact that the model with the
interaction vector as the input achieves better results in a fewer
number of iterations (mini-batches in training) than the model with
the ID as the input. In Fig. 2, "nonshared_ID" refers to the model
with the ID as the user input, and "nonshared_interaction" refers
to the model with the interaction vector as the user input. Both
models use the side information as the item input. We show the
recall and training error of the methods on Ichiba1M. The details of
this experiment and the dataset can be found in our experimental
results section 5.2. Note that the item MLP and the loss function
are the same in the two experiments and the only difference is in
their user representations.

We can see in Fig. 2 that by using the interaction vector as the
input the loss decreases and recall increases much faster than using
ID as the input. This happens because, even at the initialization and
before training the networks, "nonshared_interaction" generates
better user representations than "nonshared_ID".

To better understand the difference between the two inputs, we
further investigated the quality of the representations. We selected
a set of 20,000 users randomly and computed their representations.
Then, we computed the pairwise distances between the representa-
tions and computed their probability density functions. Fig. 3 (a)
shows the probability density function at initialization, where we
compute the user representations and distances without training
the networks. Fig. 3 (b) shows the probability densities at conver-
gence, where the representations are obtained from the trained
models with the maximum recall. Fig. 3 (c) is a magnified version
of the the Fig. 3 (b).

As we can see in Fig. 3 (a), the probability density function of
the "nonshared_ID" as the input (red curve) is similar to the density
function of a normal distribution with a very small variance. In
other words, all the user representations are almost the same. We
can also see that "nonshared_interaction" (blue curve) has a larger
variance, which means that some users are more similar to each
other than other users. In Fig. 3 (b) and (c), we can see that the
density functions become very similar at the convergence.

To understand why using interaction vector as the input leads
to a better user representation at initialization, let us take a deeper
look at the user MLP in Eq. (2). First, note that the input vector is n
dimensional and the weight matrix of the first layer is Wu

1 ∈ Rn×p .
In other words,Wu

1 contains a p-dimensional vector for each of the
n training items.We call this weight matrix a hidden item embedding
matrix. Second, note that most entries of the jth user interaction
vector Rj, : is 0. The non-zero elements correspond to the items
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Figure 1: Two-branch structure of
the neural network-based methods
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then computed the pairwise distance between the representations. We show the probability density function of the pairwise
distances.

that user j interacted with. Therefore, the output of the first layer
(before applying the activation function) is a summation of the
hidden embeddings of the items that the user has interacted with.

4.1 Sharing neural item representations with
the hidden item embeddings

We aim to to achieve better recall than the model with the inter-
action vector as the input in fewer iterations. Recall that the main
advantage of the "nonshared_interaction" is having better user rep-
resentations even at the initialization. This is achieved with the help
of the hidden item embedding matrix in the user MLP, which puts
the users with the same purchase history closer to each other even
before training the networks. However, the hidden item embedding
layer is initialized randomly and does not preserve the similarity be-
tween the items, which significantly affects the similarity between
the users’ representations.

Our main idea is to make the hidden item embedding of the user
MLP be a function of the items’ side information. This way, the
similarity between the user representations will be preserved better
from the initialization to the convergence.

Our proposed model uses the same model and objective function
as the previous works with the interaction vector as the inputs. The

only difference is that we share the item representations from the
item model with the hidden item embedding of the user model. Here
is our objective function:∑

j,k ∈S+∪S−

| |(zuj )
T zik − Ri j | |

2 s.t.

zuj = gu (Rj, :) = σ (. . . σ (σ (Rj, :Wu
1 )W

u
2 ) . . .W

u
L ),

Wu
1 = gi (X), zik = gi (Xk, :). (3)

The above loss function is minimized over the parameters of the
gi () and gu (), where gu () is the user MLP with the parameters
[Wu

2 , . . . ,W
u
L ]. Note thatW

u
1 is the hidden item embedding matrix,

which is not a parameter in our formulation. This matrix is replaced
by the output of the item MLP.

In Fig. 2, we can see that our "shared item reps" model (black
curve) achieves a higher recall using a smaller number of iterations.
Let us take a look at the density function of the users at initialization
in Fig. 3 (a). As we can see, the density function of our "shared item
reps" model is completely different from the other methods and it
is very close to the density at the convergence.

Note that when we share the item representation with the hid-
den item embeddings, we must ensure that both embeddings and
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representations have the same dimension. To avoid this, and let
each of them have its own dimension, we can define a new MLP
h() and use its output as the hidden item embeddings instead of
the output of gi (), i.e.,Wu

1 = h(X). In this case, we have two sepa-
rate MLPs to map side information to the low-dimensional space,
which makes the model more flexible and powerful. However, the
extra MLP h() adds a lot of new parameters to the loss function and
makes optimization difficult. As our main motivation is to achieve
better results faster, we focus on using the shared model.

4.2 Faster training with a simpler formulation
We optimize the objective function of Eq. (3) with the mini-batch
gradient descent. Each mini-batch contains several pairs of users
and items. Given a mini-batch, we first compute the representation
of all the items and set Wu

1 = gi (X). Then, we compute the user
and item representations and the loss value using Eq. (3). Com-
puting the representation of all the items at each mini-batch is
time-consuming and unnecessary. In the following, we rewrite the
objective function of Eq. (3) and show how we can significantly
reduce this computation.

Let us define the neighbor set of user j as the set of items that
have been purchased by that user, denoted by Nj = {k |Rjk , 0}.
For the jth user, we can rewrite the output of the first layer of the
user MLP as σ (yj ), where yj is defined as follows:

yj = Rj, :Wu
1 = Rj, :gi (X) =

∑
p∈Nj

gi (Xp, :). (4)

The above equation shows that for each user j, its initial repre-
sentation (i.e., output of the first layer) is computed as the sum
of the representations of its neighboring items Nj followed by a
nonlinear activation. Therefore, in each mini-batch, we compute
the user representations as follows: we get Nj for each user j in that
mini-batch, apply gi () to each item in Nj , use Eq. (4) to compute
its initial representation, and use Wu

2 to Wu
L in Eq. (3) to compute

the representation zuj .
In real-world datasets, each user has a small number of neigh-

bors. Since the size of the mini-batches is also small, the above
strategy computes representations of a much smaller number of
items compared to the total number of items.

4.3 Attention mechanism in learning user
representations

As we explained in Eq. (4), for each user j , its initial representation
(i.e., output of the first layer of the user MLP before applying the
activation function) , is the summation of the representations of
the items that the user interacted with. We can see in Eq. (4) that
all the items in the neighbor set Nj contribute equally (have the
same weight).

Recall that we never compute the user representation in isolation.
Our approach always takes a pair of user j and item k , and then
maps their representations either close or far away from each other.
It is therefore reasonable to consider item k when we compute the
jth user representation. Our idea is to make the initial user repre-
sentation a weighted sum of its neighbors’ item representations,
where the weights are computed based on the similarity to the kth
item. We define our new objective function as follows:

∑
j,k ∈S+∪S−

| |(zuj )
T zik − Ri j | |

2 s.t.

zuj = gu (σ (yj )), yj =
∑
p∈Nj

αpkg
i (Xp, :) zik = gi (Xk, :) (5)

where yj is the initial representation of the jth user. The key in the
above equation is αpk , which gives weight to the representation of
the pth item based on its similarity to the kth item. In this paper,
we apply cosine, dot product, and general attention mechanisms to
learn the weights. We first compute α̂pk as follows:

dot: α̂pk = (zip )
T zik general: α̂pk = (zip )

TWα zik

cosine: α̂pk =
(zip )

T zik
| |zip | | | |z

i
k | |
, (6)

where Wα is a learnable matrix in the general attention. The final
weights are achieved by applying a softmax function:

αpk =
exp(α̂pk )∑
p′∈Nj α̂p′k

. (7)

5 EXPERIMENTS
5.1 Experimental setup
5.1.1 Datasets. We have conducted experiments on three datasets:

(1) CiteULike. In this dataset, each user has a set of saved arti-
cles and the goal is to recommend new (cold-start) articles
to the users. We use the subset provided by [29], which con-
tains 5,551 users, 16,980 articles, and 204,986 user-article
pairs. The interaction matrix R is 99.8% sparse and Rjk = 1
means user j saved article k . A set of 3,396 articles are re-
moved from the training data and used as the test cold-start
articles.

(2) Ichiba1m. This dataset contains around 1million purchases
from a specific category of the Rakuten Ichiba 1. There are
around 265,000 items, 100,000 users, and 200 cold-start items.
The dataset is 99.996% sparse.

(3) Ichiba20m. This dataset contains 20million purchases from
40 different categories of the Rakuten Ichiba. There are around
5million items, 7.5million users, and 24,000 cold-start items.
The dataset is 99.99994% sparse.

5.1.2 Item side information. The side information is the input to
the item MLP. In the CiteULike dataset, we follow the approach of
[29]. The side information of the articles includes their abstracts
and titles. A vocabulary of the top 8,000 words is selected by tf-idf
and used as the articles’ features.

Rakuten Ichiba’s category taxonomy has five levels, from broad
genres (the first level, e.g., shoes) to specific genres (the fifth level,
e.g. running shoes).

In Ichiba1m and Ichiba20m, we use second-level categories, third-
level categories, and descriptions as the item side information. The
categories are converted into one-hot-encoding. For the items’ de-
scriptions, we tokenize them with MeCab2, then convert the first
50 tokens into a feature vectors using bag-of-words.
1https://rit.rakuten.co.jp/data_release/
2https://pypi.org/project/mecab-python3/
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Figure 4: In (a), (b), and (c), we report recall on the validation set at different mini-batch numbers as as we train the models in
CiteULike, Ichiba1m, and Ichiba20m datasets. In (d), we report the training error in the Ichiba20m dataset.

In Ichiba1m, there are 14 second-level categories, 150 third-level
categories, and 68,000 tokens in the vocabulary. In Ichiba20m, there
are 3,800 second-level categories, 540 third-level categories, and
719,000 tokens in the vocabulary.

5.1.3 Evaluation metrics. We report average recall in all three
datasets to evaluate the methods. The recall for a single user or
item is defined as:

Recall =
|relevant set| ∩ |retrieved set|

|relevant set|
. (8)

The relevant and retrieved sets are defined differently in Ichiba and
CiteULike datasets. Note that in all RSs algorithms, we can find
similarity scores between any pair of users and items and find top
similar ones based on the scores.

In Ichiba1m and Ichiba20m datasets, the goal is to find interested
users for a newly released (cold-start) item. For each cold-start item
(not appeared in our training set), the relevant set contains users
who purchased that item. The retrieved set contains the top K users
with the maximum similarity to the cold-start item.

In CiteULike dataset, we follow [29] in computing the recall. The
goal in this dataset is to assign a set of cold-start articles to each user.

Therefore, for each user, the relevant set is defined as the set of cold-
start articles that have been saved by that user. The retrieved set
contains the top K cold-start articles (with the maximum similarity)
for each user.

5.1.4 Implementation details. We implemented the methods using
Keras with TensorFlow 2 backend. We ran all the experiments on
a 12 GB GPU. We set the mini-batch size to 32 and the maximum
number of epochs to 50. We use SGD in all experiments and pick
the best learning rate from 10−1 to 10−4. The learning rate of our
shared model and its variants is 0.01 in the Ichiba1m and Ichiba20m
datasets and 0.001 in the CiteULike dataset.

The user and item embedding sizes are fixed to 100 in all ex-
periments. Unless otherwise stated, the user and item MLPs have
3 fully connected layers. In Ichiba20m and Ichiba1m, we use the
contrastive loss and in the CiteULike we use the dot-mse of Eq. (2)
as the loss function.

We set K = 100 in computing the recall in all experiments. We
report the recall several times in each epoch during the training
process to show which method achieves the highest recall faster.
Computing the retrieved set over all the users this way is very
time-consuming in Ichiba20m and Ichiba1m. Therefore, in these
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Figure 5: We report recall (top row) and training error (bottom row) at different mini-batch numbers during the training. The
recall and error are reported on the CiteULike (left panel) and Ichiba1m (right panel).

two datasets, the retrieved set for each cold-start item is computed
over a subset of the users, which contains: 1) all the buyers and 2)
1,000 randomly selected users from the non-buyers. We verified
that by using all the users or a subset of them in computing the
recall, the order of the methods remains the same.

5.2 Experimental results
5.2.1 Sharing item representations leads to better recall in fewer
training iterations. In Fig. 4 (a), (b), and (c), we report recall on
the validation set at different batch numbers as we train the mod-
els. We can see the same pattern in all three datasets. The "non-
shared_interaction" always achieves better recall faster than "non-
shared_ID" because of having better user representations at the
initialization. Our "shared item reps" model, which shares the item
representations with the hidden item embeddings, achieves a higher
recall even faster than "nonshared_interaction".

We can see that the advantage of the "shared item reps" is more
significant in the Ichiba20m dataset. This is because Ichiba20m
has a lot more items and users than the rest of the datasets. Note
that the number of parameters of the non-shared models almost
linearly increases with the number of users and items. In our case,

since the representations are shared, the number of parameters is
significantly smaller. This helps the shared model to have easier
optimization and better generalization on bigger datasets.

5.2.2 Attention mechanism improves the performance. In Fig. 4, we
have added the "shared item reps" model with the (cosine) attention
mechanism to the plots. We can see that its recall is significantly
better than non-shared models and slightly better than the "shared
item reps" model without the attention.

To understand how the attention mechanism achieves such a
good result, we have plotted the training error of the methods in
Fig. 4 (d). We can see that the training error of the attention model is
not better than the rest of the methods. This means that the success
of the attention mechanism is because of its complex process at test
time. Recall that the non-attention models can compute and store
the user representations when the training is done. In other words,
the user representations are fixed after the training, no matter what
the test item is. When we use the attention mechanism, the user
representations are not fixed and updated based on the test item.
This is because the test items define the weights in combining the
neighbor item representations in Eq. (5). This more complex and
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Figure 6: Both plots belong to the Ichiba1m dataset. Left: We change the size of the training set from 330K to 1.6M and train
the models. The "shared item reps" model needs less data than the "nonshared_interatcion" model to achieve reasonable re-
sults. Right: We train the "shared item reps" model with a different number of negative samples and report the recall. The
performance of the model improves as we increase the number of negative samples.

time-consuming process at the test time improves the recall, even
without decreasing the training error significantly.

5.2.3 Different attention mechanisms. In Fig. 5, we compare the at-
tention mechanisms in CiteULike (left) and Ichiba1m (right). There
are two versions for each attention mechanism: with and without
removing the item. Let us explain what they mean.

Consider a positive pair in the training set, e.g., user j and item k
with Rjk = 1. Since Rjk = 1, the neighbor set of the user j contains
item k , i.e., k ∈ Nj . As we can see in Eq. (5), we have to compute the
similarity between item k and all the items in Nj . This might lead
to overfitting since Nj includes k and the similarity between item
k and itself could become very large and dominate other similarity
values. For this reason, we have implemented two variants of each
attention method, one with all the items in the neighbor set and one
with removing the item from the neighbor set. In Fig. 5 , when we
remove the item from the neighbor set of the user, we put "rm_itm"
besides the type of the attention mechanism. Note that removing
the item only happens at training. During the test, we use all the
items in the neighbor set.

Let us take a look at the bottom row of Fig. 5, where we report the
training errors. In both datasets, the models achieve better training
errors without removing the items, as expected. It is remarkable
that the cosine attention without removing the item stays in be-
tween the other models in both datasets. This is mainly because
of the normalization (dividing by the norm) that happens in com-
puting the cosine similarity. This normalization does not let the
item representations become too large, acts as a regularizer, and
does not let the training error become as low as the dot and general
mechanisms.

If we look at the recall in the top row, we can see that the dot
and general mechanisms (with all the items) are clearly overfitting.
All the attention mechanisms with the "rm_itm" strategy achieve
higher recall. The only exception is the cosine in the Ichiba1m,
which performs almost as well as other methods with the "rm_itm".

This means that at test time, the cold-start items have high simi-
larity to at least one item in the neighbor set of interested users.
Cosine attention takes advantage of this property of the Ichiba1m,
avoids overfitting using the normalization factor, and achieves the
maximum recall.

5.2.4 Sharing item representations is more crucial when models
are trained on smaller subsets of training data. In the real-world
datasets, we have access to hundreds of millions of purchases (user-
item pairs). Training the model on all the data can take a very long
time. Therefore, the model that is more robust to the change in
number of training data is more applicable in real-world scenarios.

In Fig. 6 (a), we designed an experiment on the Ichiba1m to
compare the sensitivity of the models to the number of training
data. We trained the models on a subset of the Ichiba1m dataset,
where the size of the subsets is between 330K to 1.6M. The test
cold-start items were the same in all experiments.

The recall of both methods in Fig. 6 (a) improves as we increase
the number of training data. The "shared item reps" model performs
significantly better on the smaller subsets. This has two reasons.
First, the model with the shared item representations has a smaller
number of parameters so it achieves a better generalization using
a smaller number of training data. Second, when we decrease the
number of training data, the number of "seen" users decreases.
The "nonshared_interaction" model has difficulty handling this
situation because the representation of the users does not get better
if it does not see enough users. In the "shared item reps" model, the
representation of the users is a function of item representations.
So, as long as it learns meaningful item representations, it can
generalize to the unseen users.

5.2.5 Ablation study: number of negative samples and number of
layers in the user MLP. In the implicit feedback prediction, we only
have access to positive interactions. The negative pairs are sampled
randomly from unknown interactions. In Fig. 6 (b), we investigate
the importance of increasing the number of negative samples. We

429



Shared Neural Item Representations for Completely Cold Start Problem RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

(a) CiteULike (b) Ichiba1m
Re

ca
ll

0.0 0.5 1.0 1.5 2.0 2.5
1e6

40

45

50

55

60

65

 

w/ attention (1 FC user MLP)
w/ attention (3 FC user MLP)
w/o attention (1 FC user MLP)
w/o attention (3 FC user MLP)

Re
ca
ll

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e6

40

45

50

55

60

65  

w/ attention (1 FC user MLP)
w/ attention (3 FC user MLP)
w/o attention (1 FC user MLP)
w/o attention (3 FC user MLP)

mini-batch number mini-batch number

Figure 7: We train our "shared item reps" model with and without the attention mechanism, where the user MLP contains 1
or 3 fully connected layer. We report recall at different mini-batch numbers in training. The deeper user MLPs are helpful in
the Ichiba1m dataset.

Table 1: Comparison with the state-of-the-art cold-start
methods on CiteULike dataset. The * after the methods’
name means we report the results from the DropoutNet pa-
per’s table [29]. Our methods outperforms the competitors.

method Test recall %

shared item reps w/ attention 66.4

shared item reps 65.7

DN-WMF (DropoutNet, retrained) [29] 65.2

DN-WMF* (DropoutNet) [29] 63.6

ACCM [23] 63.1

DN-CDL* (DropoutNet) [29] 62.9

DeepMusic* [27] 60.1

CTR* [30] 58.9

CDL* [31] 57.3

set the number of negative samples to 1) equal, 2) twice, and 3)
three times the number of positive samples. The results in Fig. 6 (b)
show that increasing the number of negative samples improves the
performance.

In Fig. 7, we investigate how increasing the number of layers of
the user MLP affects the performance. In CiteULike dataset, which
is smaller and simpler than Ichiba1m, adding layers to the user
MLP does not help. But, in Ichiba1m, we can improve the recall by
increasing the number of layers.

5.2.6 Comparison with the methods in the literature . In Table 1,
we compare our model (with and without the attention mechanism)
with several recent cold-start works using CiteULike dataset. As we
can see from the table, our methods outperforms the competitors.

The code and the training/test sets of the CiteULike experiment
in the DorpoutNet [29] is available online 3. We use the code and
processed data provided in this repository to train our models.

In Table 1, a * after the methods’ names means that we use
the reported results in the DorpoutNet paper [29]. In DN-WMF
(retrained), we trained the DropoutNet model by maximizing the
droupout ratio of the item preference vector. We did that to force
the model to ignore the preference vector and perform better in
the cold-star situation. In ACCM [23], we removed the user side
information and the item ID from the model structure to make it
work in the complete cold-start situation.

6 CONCLUSION
In this paper, we presented a hybrid method to address the com-
pletely item cold-start problem. The two common inputs to learn
user representations are the user ID and interaction vectors. We
empirically compared these two inputs and showed that using the
interaction vector can lead to better results faster. To achieve bet-
ter user representation and better recall in fewer iterations, we
proposed to share the item representations with the hidden item
embedding matrix of the user MLP. We also showed how we can
use the attention mechanism to further improve the prediction per-
formance. Our experimental results confirmed that our approach
outperforms the previous works.

REFERENCES
[1] Oren Barkan, Noam Koenigstein, Eylon Yogev, and Ori Katz. 2019. CB2CF: a neu-

ral multiview content-to-collaborative filtering model for completely cold item
recommendations. In Proceedings of the 13th ACM Conference on Recommender
Systems (RecSys). https://doi.org/10.1145/3298689.3347038

[2] Robert M. Bell and Yehuda Koren. 2007. Scalable Collaborative Filtering with
Jointly Derived Neighborhood Interpolation Weights. In Proceedings of the 7th
IEEE International Conference Data Mining (ICDM).

[3] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. Journal of Machine Learning Research (JMLR) (2003).

[4] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-
Seng Chua. 2017. Attentive Collaborative Filtering: Multimedia Recommendation

3https://github.com/layer6ai-labs/DropoutNet

430

https://doi.org/10.1145/3298689.3347038
https://github.com/layer6ai-labs/DropoutNet


RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Ramin Raziperchikolaei, Guannan Liang, and Young-joo Chung

with Item- and Component-Level Attention. In Proceedings of the 40th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR). https://doi.org/10.1145/3077136.3080797

[5] Minmin Chen, Zhixiang Xu, Kilian Q. Weinberger, and Fei Sha. 2012. Marginal-
ized denoising autoencoders for domain adaptation. In Proceedings of the 29th
International Conference on Machine Learning (ICML).

[6] Xin Dong, Lei Yu, Zhonghuo Wu, Yuxia Sun, Lingfeng Yuan, and Fangxi Zhang.
2017. A hybrid collaborative filtering model with deep structure for recommender
systems. In Proceedings of the 31st AAAI Conference on Artificial Intelligence.

[7] Zhi-HongDong, Ling Huang, Chang-DongWang, Jian-Huang Lai, and Philip S Yu.
2019. DeepCF: A Unified Framework of Representation Learning and Matching
Function Learning in Recommender System. In Proceedings of the 33rd AAAI
Conference on Artificial Intelligence.

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning (ICML).

[9] Prem Gopalan, Jake M. Hofman, and David M. Blei. 2015. Scalable recommenda-
tion with hierarchical Poisson factorization. In Proceedings of the 31st Conference
on Uncertainty in Artificial Intelligence (UAI).

[10] Xiangnan He, Xiaoyu Du, Xiang Wang, Feng Tian, Jinhui Tang, and Tat-Seng
Chua. 2018. Outer Product-Based Neural Collaborative Filtering. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence (IJCAI).

[11] Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and
Tat-Seng Chua. 2018. NAIS: Neural Attentive Item Similarity Model for Rec-
ommendation. IEEE Transactions on Knowledge and Data Engineering (2018),
2354–2366.

[12] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web (WWW).

[13] Thomas Hofmann. 2004. Latent Semantic Models for Collaborative Filtering.
ACM Transactions on Information Systems (2004), 89–115.

[14] Yehuda Koren. 2008. Factorization meets the neighborhood:a Multifaceted
Collaborative Filtering Model. In Proceedings of the 14th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD). https:
//doi.org/10.1145/1401890.1401944

[15] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. Computer 42, 8 (2009), 30–37. https:
//doi.org/10.1109/mc.2009.263

[16] Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. 2019.
MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD).

[17] Sheng Li, Jaya Kawale, and Yun Fu. 2015. Deep Collaborative Filtering via
Marginalized Denoising Auto-encoder. In Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowledge Management (CIKM).
https://doi.org/10.1145/2806416.2806527

[18] Tianyu Li, Yukun Ma, Jiu Xu, Bjorn Stenger, Chen Liu, and Yu Hirate. 2018. Deep
Heterogeneous Autoencoders for Collaborative Filtering. In Proceedings of the
18th IEEE International Conference Data Mining (ICDM).

[19] Ramin Raziperchikolaei, Tianyu Li, and Young joo Chung. 2021. Neural Repre-
sentations in Hybrid Recommender Systems: Prediction versus Regularization.
In Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval.

[20] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor (Eds.). 2011.
Recommender Systems Handbook. Springer US. https://doi.org/10.1007/978-0-
387-85820-3

[21] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio.
2011. Contractive auto-encoders: explicit invariance during feature extraction.
In Proceedings of the 28th International Conference on Machine Learning (ICML).

[22] Ruslan Salakhutdinov and Andriy Mnih. 2007. Probabilistic Matrix Factorization.
In Proceedings of the 20th International Conference on Neural Information Processing
Systems (NIPS).

[23] Shaoyun Shi, Min Zhang, Yiqun Liu, and Shaoping Ma. 2018. Attention-based
Adaptive Model to Unify Warm and Cold Starts Recommendation. In Proceed-
ings of the 27th ACM International on Conference on Information and Knowledge
Management (CIKM). https://doi.org/10.1145/3269206.3271710

[24] Malcolm Slaney. 2011. Web-Scale Multimedia Analysis: Does Content Matter?
IEEE Multimedia (2011), 12–15.

[25] Florian Strub, Romaric Gaudel, and Jérémie Mary. 2016. Hybrid Recommender
System based on Autoencoders. In Proceedings of the 1st Workshop on Deep
Learning for Recommender Systems (DLSRS). https://doi.org/10.1145/2988450.
2988456

[26] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. 2008. Matrix
factorization and neighbor based algorithms for the netflix prize problem. In
Proceedings of the 2nd ACM Conference on Recommender Systems (RecSys). https:
//doi.org/10.1145/1454008.1454049

[27] Aäron van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep
content-based music recommendation. In Proceedings of the 26th International

Conference on Neural Information Processing Systems (NIPS).
[28] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre

antoine Manzagol. 2010. Stacked denoising autoencoders: learning useful repre-
sentations in a deep network with a local denoising criterion. Journal of Machine
Learning Research (JMLR) (2010).

[29] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. 2017. DropoutNet: Address-
ing Cold Start in Recommender Systems. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (NIPS).

[30] Chong Wang and David M. Blei. 2011. Collaborative topic modeling for recom-
mending scientific articles. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD).

[31] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative Deep Learning
for Recommender Systems. In Proceedings of the 21st ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). https://doi.org/10.
1145/2783258.2783273

[32] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen. 2017.
Deep Matrix Factorization Models for Recommender Systems. In Proceedings of
the 26th International Joint Conference on Artificial Intelligence (IJCAI). https:
//doi.org/10.24963/ijcai.2017/447

[33] Shuai Zhang, Lina Yao, and Xiwei Xu. 2017. AutoSVD++: An Efficient Hybrid
Collaborative Filtering Model via Contractive Auto-encoders. In Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR). https://doi.org/10.1145/3077136.3080689

[34] Yongfeng Zhang, Qingyao Ai, Xu Chen, and W. Bruce Croft. 2017. Joint Repre-
sentation Learning for Top-N Recommendation with Heterogeneous Information
Sources. In Proceedings of the 26th ACM International on Conference on Information
and Knowledge Management (CIKM). https://doi.org/10.1145/3132847.3132892

431

https://doi.org/10.1145/3077136.3080797
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1109/mc.2009.263
https://doi.org/10.1109/mc.2009.263
https://doi.org/10.1145/2806416.2806527
https://doi.org/10.1007/978-0-387-85820-3
https://doi.org/10.1007/978-0-387-85820-3
https://doi.org/10.1145/3269206.3271710
https://doi.org/10.1145/2988450.2988456
https://doi.org/10.1145/2988450.2988456
https://doi.org/10.1145/1454008.1454049
https://doi.org/10.1145/1454008.1454049
https://doi.org/10.1145/2783258.2783273
https://doi.org/10.1145/2783258.2783273
https://doi.org/10.24963/ijcai.2017/447
https://doi.org/10.24963/ijcai.2017/447
https://doi.org/10.1145/3077136.3080689
https://doi.org/10.1145/3132847.3132892

	Abstract
	1 Introduction
	2 Previous works
	2.1 Matrix factorization and neighborhood-based methods
	2.2 Attentions in recommendation systems
	2.3 Recommendation systems for cold-start problems

	3 Neural network-based methods in the cold-start problem
	4 Our proposed method: shared neural item representation
	4.1 Sharing neural item representations with the hidden item embeddings
	4.2 Faster training with a simpler formulation
	4.3 Attention mechanism in learning user representations

	5 Experiments
	5.1 Experimental setup
	5.2 Experimental results

	6 Conclusion
	References

